Mathematics > Numerical Analysis
[Submitted on 27 May 2022 (v1), last revised 16 Nov 2023 (this version, v3)]
Title:Krylov subspace restarting for matrix Laplace transforms
View PDFAbstract:A common way to approximate $F(A)b$ -- the action of a matrix function on a vector -- is to use the Arnoldi approximation. Since a new vector needs to be generated and stored in every iteration, one is often forced to rely on restart algorithms which are either not efficient, not stable or only applicable to restricted classes of functions. We present a new representation of the error of the Arnoldi iterates if the function $F$ is given as a Laplace transform. Based on this representation we build an efficient and stable restart algorithm. In doing so we extend earlier work for the class of Stieltjes functions which are special Laplace transforms. We report several numerical experiments including comparisons with the restart method for Stieltjes functions.
Submission history
From: Manuel Tsolakis [view email][v1] Fri, 27 May 2022 09:13:00 UTC (106 KB)
[v2] Sat, 10 Sep 2022 09:30:51 UTC (110 KB)
[v3] Thu, 16 Nov 2023 12:57:13 UTC (111 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.