Computer Science > Computer Science and Game Theory
[Submitted on 27 Jun 2022 (v1), last revised 23 Aug 2022 (this version, v2)]
Title:Differentially Private Condorcet Voting
View PDFAbstract:Designing private voting rules is an important and pressing problem for trustworthy democracy. In this paper, under the framework of differential privacy, we propose a novel famliy of randomized voting rules based on the well-known Condorcet method, and focus on three classes of voting rules in this family: Laplacian Condorcet method ($\CMLAP_\lambda$), exponential Condorcet method ($\CMEXP_\lambda$), and randomized response Condorcet method ($\CMRR_\lambda$), where $\lambda$ represents the level of noise. We prove that all of our rules satisfy absolute monotonicity, lexi-participation, probabilistic Pareto efficiency, approximate probabilistic Condorcet criterion, and approximate SD-strategyproofness. In addition, $\CMRR_\lambda$ satisfies (non-approximate) probabilistic Condorcet criterion, while $\CMLAP_\lambda$ and $\CMEXP_\lambda$ satisfy strong lexi-participation. Finally, we regard differential privacy as a voting axiom, and discuss its relations to other axioms.
Submission history
From: Zhechen Li [view email][v1] Mon, 27 Jun 2022 06:55:22 UTC (95 KB)
[v2] Tue, 23 Aug 2022 01:03:11 UTC (114 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.