Computer Science > Machine Learning
[Submitted on 9 Jul 2022 (v1), last revised 14 Nov 2022 (this version, v4)]
Title:Jacobian Norm with Selective Input Gradient Regularization for Improved and Interpretable Adversarial Defense
View PDFAbstract:Deep neural networks (DNNs) are known to be vulnerable to adversarial examples that are crafted with imperceptible perturbations, i.e., a small change in an input image can induce a mis-classification, and thus threatens the reliability of deep learning based deployment systems. Adversarial training (AT) is often adopted to improve robustness through training a mixture of corrupted and clean data. However, most of AT based methods are ineffective in dealing with transferred adversarial examples which are generated to fool a wide spectrum of defense models, and thus cannot satisfy the generalization requirement raised in real-world scenarios. Moreover, adversarially training a defense model in general cannot produce interpretable predictions towards the inputs with perturbations, whilst a highly interpretable robust model is required by different domain experts to understand the behaviour of a DNN. In this work, we propose a novel approach based on Jacobian norm and Selective Input Gradient Regularization (J-SIGR), which suggests the linearized robustness through Jacobian normalization and also regularizes the perturbation-based saliency maps to imitate the model's interpretable predictions. As such, we achieve both the improved defense and high interpretability of DNNs. Finally, we evaluate our method across different architectures against powerful adversarial attacks. Experiments demonstrate that the proposed J-SIGR confers improved robustness against transferred adversarial attacks, and we also show that the predictions from the neural network are easy to interpret.
Submission history
From: Lin Wu [view email][v1] Sat, 9 Jul 2022 01:06:41 UTC (7,266 KB)
[v2] Wed, 27 Jul 2022 09:26:30 UTC (7,271 KB)
[v3] Sun, 28 Aug 2022 02:43:47 UTC (7,271 KB)
[v4] Mon, 14 Nov 2022 09:46:09 UTC (7,139 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.