Computer Science > Computer Science and Game Theory
[Submitted on 3 Nov 2022 (v1), last revised 11 May 2023 (this version, v3)]
Title:$2 \times 2$ Zero-Sum Games with Commitments and Noisy Observations
View PDFAbstract:In this paper, $2\times2$ zero-sum games are studied under the following assumptions: $(1)$ One of the players (the leader) commits to choose its actions by sampling a given probability measure (strategy); $(2)$ The leader announces its action, which is observed by its opponent (the follower) through a binary channel; and $(3)$ the follower chooses its strategy based on the knowledge of the leader's strategy and the noisy observation of the leader's action. Under these conditions, the equilibrium is shown to always exist. Interestingly, even subject to noise, observing the actions of the leader is shown to be either beneficial or immaterial for the follower. More specifically, the payoff at the equilibrium of this game is upper bounded by the payoff at the Stackelberg equilibrium (SE) in pure strategies; and lower bounded by the payoff at the Nash equilibrium, which is equivalent to the SE in mixed this http URL, necessary and sufficient conditions for observing the payoff at equilibrium to be equal to its lower bound are presented. Sufficient conditions for the payoff at equilibrium to be equal to its upper bound are also presented.
Submission history
From: Ke Sun [view email][v1] Thu, 3 Nov 2022 10:56:00 UTC (933 KB)
[v2] Wed, 10 May 2023 00:50:30 UTC (330 KB)
[v3] Thu, 11 May 2023 08:29:01 UTC (331 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.