Electrical Engineering and Systems Science > Signal Processing
[Submitted on 22 Oct 2022 (v1), last revised 3 Jun 2023 (this version, v2)]
Title:Leveraging Statistical Shape Priors in GAN-based ECG Synthesis
View PDFAbstract:Electrocardiogram (ECG) data collection during emergency situations is challenging, making ECG data generation an efficient solution for dealing with highly imbalanced ECG training datasets. In this paper, we propose a novel approach for ECG signal generation using Generative Adversarial Networks (GANs) and statistical ECG data modeling. Our approach leverages prior knowledge about ECG dynamics to synthesize realistic signals, addressing the complex dynamics of ECG signals. To validate our approach, we conducted experiments using ECG signals from the MIT-BIH arrhythmia database. Our results demonstrate that our approach, which models temporal and amplitude variations of ECG signals as 2-D shapes, generates more realistic signals compared to state-of-the-art GAN based generation baselines. Our proposed approach has significant implications for improving the quality of ECG training datasets, which can ultimately lead to better performance of ECG classification algorithms. This research contributes to the development of more efficient and accurate methods for ECG analysis, which can aid in the diagnosis and treatment of cardiac diseases.
Submission history
From: Achraf Ben-Hamadou [view email][v1] Sat, 22 Oct 2022 18:06:11 UTC (1,768 KB)
[v2] Sat, 3 Jun 2023 07:22:24 UTC (2,717 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.