Quantitative Finance > Trading and Market Microstructure
[Submitted on 5 Sep 2022]
Title:Newly Developed Flexible Grid Trading Model Combined ANN and SSO algorithm
View PDFAbstract:In modern society, the trading methods and strategies used in financial market have gradually changed from traditional on-site trading to electronic remote trading, and even online automatic trading performed by a pre-programmed computer programs because the continuous development of network and computer computing technology. The quantitative trading, which the main purpose is to automatically formulate people's investment decisions into a fixed and quantifiable operation logic that eliminates all emotional interference and the influence of subjective thoughts and applies this logic to financial market activities in order to obtain excess profits above average returns, has led a lot of attentions in financial market. The development of self-adjustment programming algorithms for automatically trading in financial market has transformed a top priority for academic research and financial practice. Thus, a new flexible grid trading model combined with the Simplified Swarm Optimization (SSO) algorithm for optimizing parameters for various market situations as input values and the fully connected neural network (FNN) and Long Short-Term Memory (LSTM) model for training a quantitative trading model to automatically calculate and adjust the optimal trading parameters for trading after inputting the existing market situation is developed and studied in this work. The proposed model provides a self-adjust model to reduce investors' effort in the trading market, obtains outperformed investment return rate and model robustness, and can properly control the balance between risk and return.
Current browse context:
q-fin.TR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.