Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 25 Dec 2022 (v1), last revised 17 Jul 2024 (this version, v2)]
Title:More is Different: Prototyping and Analyzing a New Form of Edge Server with Massive Mobile SoCs
View PDF HTML (experimental)Abstract:Huge energy consumption poses a significant challenge for edge clouds. In response to this, we introduce a new type of edge server, namely SoC Cluster, that orchestrates multiple low-power mobile system-on-chips (SoCs) through an on-chip network. For the first time, we have developed a concrete SoC Cluster consisting of 60 Qualcomm Snapdragon 865 SoCs housed in a 2U rack, which has been successfully commercialized and extensively deployed in edge clouds. Cloud gaming emerges as the principal workload on these deployed SoC Clusters, owing to the compatibility between mobile SoCs and native mobile games.
In this study, we aim to demystify whether the SoC Cluster can efficiently serve more generalized, typical edge workloads. Therefore, we developed a benchmark suite that employs state-of-the-art libraries for two critical edge workloads, i.e., video transcoding and deep learning inference. This suite evaluates throughput, latency, power consumption, and other application-specific metrics like video quality. Following this, we conducted a thorough measurement study and directly compared the SoC Cluster with traditional edge servers, with regards to electricity usage and monetary cost. Our results quantitatively reveal when and for which applications mobile SoCs exhibit higher energy efficiency than traditional servers, as well as their ability to proportionally scale power consumption with fluctuating incoming loads. These outcomes provide insightful implications and offer valuable direction for further refinement of the SoC Cluster to facilitate its deployment across wider edge scenarios.
Submission history
From: Li Zhang [view email][v1] Sun, 25 Dec 2022 02:42:46 UTC (1,689 KB)
[v2] Wed, 17 Jul 2024 03:35:54 UTC (1,258 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.