Computer Science > Machine Learning
[Submitted on 20 Jan 2023]
Title:Plan To Predict: Learning an Uncertainty-Foreseeing Model for Model-Based Reinforcement Learning
View PDFAbstract:In Model-based Reinforcement Learning (MBRL), model learning is critical since an inaccurate model can bias policy learning via generating misleading samples. However, learning an accurate model can be difficult since the policy is continually updated and the induced distribution over visited states used for model learning shifts accordingly. Prior methods alleviate this issue by quantifying the uncertainty of model-generated samples. However, these methods only quantify the uncertainty passively after the samples were generated, rather than foreseeing the uncertainty before model trajectories fall into those highly uncertain regions. The resulting low-quality samples can induce unstable learning targets and hinder the optimization of the policy. Moreover, while being learned to minimize one-step prediction errors, the model is generally used to predict for multiple steps, leading to a mismatch between the objectives of model learning and model usage. To this end, we propose \emph{Plan To Predict} (P2P), an MBRL framework that treats the model rollout process as a sequential decision making problem by reversely considering the model as a decision maker and the current policy as the dynamics. In this way, the model can quickly adapt to the current policy and foresee the multi-step future uncertainty when generating trajectories. Theoretically, we show that the performance of P2P can be guaranteed by approximately optimizing a lower bound of the true environment return. Empirical results demonstrate that P2P achieves state-of-the-art performance on several challenging benchmark tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.