Computer Science > Computation and Language
[Submitted on 20 Jan 2023 (v1), last revised 25 Jan 2023 (this version, v2)]
Title:Same Words, Different Meanings: Semantic Polarization in Broadcast Media Language Forecasts Polarization on Social Media Discourse
View PDFAbstract:With the growth of online news over the past decade, empirical studies on political discourse and news consumption have focused on the phenomenon of filter bubbles and echo chambers. Yet recently, scholars have revealed limited evidence around the impact of such phenomenon, leading some to argue that partisan segregation across news audiences cannot be fully explained by online news consumption alone and that the role of traditional legacy media may be as salient in polarizing public discourse around current events. In this work, we expand the scope of analysis to include both online and more traditional media by investigating the relationship between broadcast news media language and social media discourse. By analyzing a decade's worth of closed captions (2 million speaker turns) from CNN and Fox News along with topically corresponding discourse from Twitter, we provide a novel framework for measuring semantic polarization between America's two major broadcast networks to demonstrate how semantic polarization between these outlets has evolved (Study 1), peaked (Study 2) and influenced partisan discussions on Twitter (Study 3) across the last decade. Our results demonstrate a sharp increase in polarization in how topically important keywords are discussed between the two channels, especially after 2016, with overall highest peaks occurring in 2020. The two stations discuss identical topics in drastically distinct contexts in 2020, to the extent that there is barely any linguistic overlap in how identical keywords are contextually discussed. Further, we demonstrate at scale, how such partisan division in broadcast media language significantly shapes semantic polarity trends on Twitter (and vice-versa), empirically linking for the first time, how online discussions are influenced by televised media.
Submission history
From: Xiaohan Ding [view email][v1] Fri, 20 Jan 2023 23:59:26 UTC (13,962 KB)
[v2] Wed, 25 Jan 2023 00:34:22 UTC (13,962 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.