Computer Science > Artificial Intelligence
[Submitted on 4 Feb 2023]
Title:Dynamical Equations With Bottom-up Self-Organizing Properties Learn Accurate Dynamical Hierarchies Without Any Loss Function
View PDFAbstract:Self-organization is ubiquitous in nature and mind. However, machine learning and theories of cognition still barely touch the subject. The hurdle is that general patterns are difficult to define in terms of dynamical equations and designing a system that could learn by reordering itself is still to be seen. Here, we propose a learning system, where patterns are defined within the realm of nonlinear dynamics with positive and negative feedback loops, allowing attractor-repeller pairs to emerge for each pattern observed. Experiments reveal that such a system can map temporal to spatial correlation, enabling hierarchical structures to be learned from sequential data. The results are accurate enough to surpass state-of-the-art unsupervised learning algorithms in seven out of eight experiments as well as two real-world problems. Interestingly, the dynamic nature of the system makes it inherently adaptive, giving rise to phenomena similar to phase transitions in chemistry/thermodynamics when the input structure changes. Thus, the work here sheds light on how self-organization can allow for pattern recognition and hints at how intelligent behavior might emerge from simple dynamic equations without any objective/loss function.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.