Mathematics > Numerical Analysis
[Submitted on 12 Mar 2023]
Title:$hp$-Multigrid preconditioner for a divergence-conforming HDG scheme for the incompressible flow problems
View PDFAbstract:In this study, we present an $hp$-multigrid preconditioner for a divergence-conforming HDG scheme for the generalized Stokes and the Navier-Stokes equations using an augmented Lagrangian formulation. Our method relies on conforming simplicial meshes in two- and three-dimensions. The $hp$-multigrid algorithm is a multiplicative auxiliary space preconditioner that employs the lowest-order space as the auxiliary space, and we developed a geometric multigrid method as the auxiliary space solver. For the generalized Stokes problem, the crucial ingredient of the geometric multigrid method is the equivalence between the condensed lowest-order divergence-conforming HDG scheme and a Crouzeix-Raviart discretization with a pressure-robust treatment as introduced in Linke and Merdon (Comput. Methods Appl. Mech. Engrg., 311 (2016)), which allows for the direct application of geometric multigrid theory on the Crouzeix-Raviart discretization. The numerical experiments demonstrate the robustness of the proposed $hp$-multigrid preconditioner with respect to mesh size and augmented Lagrangian parameter, with iteration counts insensitivity to polynomial order increase. Inspired by the works by Benzi & Olshanskii (SIAM J. Sci. Comput., 28(6) (2006)) and Farrell et al. (SIAM J. Sci. Comput., 41(5) (2019)), we further test the proposed preconditioner on the divergence-conforming HDG scheme for the Navier-Stokes equations. Numerical experiments show a mild increase in the iteration counts of the preconditioned GMRes solver with the rise in Reynolds number up to $10^3$.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.