Computer Science > Machine Learning
[Submitted on 8 Apr 2023 (v1), last revised 9 Jul 2023 (this version, v2)]
Title:SimbaML: Connecting Mechanistic Models and Machine Learning with Augmented Data
View PDFAbstract:Training sophisticated machine learning (ML) models requires large datasets that are difficult or expensive to collect for many applications. If prior knowledge about system dynamics is available, mechanistic representations can be used to supplement real-world data. We present SimbaML (Simulation-Based ML), an open-source tool that unifies realistic synthetic dataset generation from ordinary differential equation-based models and the direct analysis and inclusion in ML pipelines. SimbaML conveniently enables investigating transfer learning from synthetic to real-world data, data augmentation, identifying needs for data collection, and benchmarking physics-informed ML approaches. SimbaML is available from this https URL.
Submission history
From: Katharina Baum [view email][v1] Sat, 8 Apr 2023 12:50:50 UTC (2,134 KB)
[v2] Sun, 9 Jul 2023 16:10:55 UTC (2,134 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.