Computer Science > Machine Learning
[Submitted on 26 May 2023 (v1), last revised 14 Mar 2024 (this version, v3)]
Title:Double Descent and Overfitting under Noisy Inputs and Distribution Shift for Linear Denoisers
View PDF HTML (experimental)Abstract:Despite the importance of denoising in modern machine learning and ample empirical work on supervised denoising, its theoretical understanding is still relatively scarce. One concern about studying supervised denoising is that one might not always have noiseless training data from the test distribution. It is more reasonable to have access to noiseless training data from a different dataset than the test dataset. Motivated by this, we study supervised denoising and noisy-input regression under distribution shift. We add three considerations to increase the applicability of our theoretical insights to real-life data and modern machine learning. First, while most past theoretical work assumes that the data covariance matrix is full-rank and well-conditioned, empirical studies have shown that real-life data is approximately low-rank. Thus, we assume that our data matrices are low-rank. Second, we drop independence assumptions on our data. Third, the rise in computational power and dimensionality of data have made it important to study non-classical regimes of learning. Thus, we work in the non-classical proportional regime, where data dimension $d$ and number of samples $N$ grow as $d/N = c + o(1)$.
For this setting, we derive data-dependent, instance specific expressions for the test error for both denoising and noisy-input regression, and study when overfitting the noise is benign, tempered or catastrophic. We show that the test error exhibits double descent under general distribution shift, providing insights for data augmentation and the role of noise as an implicit regularizer. We also perform experiments using real-life data, where we match the theoretical predictions with under 1\% MSE error for low-rank data.
Submission history
From: Rishi Sonthalia [view email][v1] Fri, 26 May 2023 22:41:40 UTC (417 KB)
[v2] Tue, 24 Oct 2023 13:33:37 UTC (454 KB)
[v3] Thu, 14 Mar 2024 23:02:53 UTC (768 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.