Computer Science > Machine Learning
[Submitted on 14 Jul 2023]
Title:Scalable Deep Learning for RNA Secondary Structure Prediction
View PDFAbstract:The field of RNA secondary structure prediction has made significant progress with the adoption of deep learning techniques. In this work, we present the RNAformer, a lean deep learning model using axial attention and recycling in the latent space. We gain performance improvements by designing the architecture for modeling the adjacency matrix directly in the latent space and by scaling the size of the model. Our approach achieves state-of-the-art performance on the popular TS0 benchmark dataset and even outperforms methods that use external information. Further, we show experimentally that the RNAformer can learn a biophysical model of the RNA folding process.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.