Computer Science > Machine Learning
[Submitted on 3 Aug 2023]
Title:Hard Adversarial Example Mining for Improving Robust Fairness
View PDFAbstract:Adversarial training (AT) is widely considered the state-of-the-art technique for improving the robustness of deep neural networks (DNNs) against adversarial examples (AE). Nevertheless, recent studies have revealed that adversarially trained models are prone to unfairness problems, restricting their applicability. In this paper, we empirically observe that this limitation may be attributed to serious adversarial confidence overfitting, i.e., certain adversarial examples with overconfidence. To alleviate this problem, we propose HAM, a straightforward yet effective framework via adaptive Hard Adversarial example this http URL concentrates on mining hard adversarial examples while discarding the easy ones in an adaptive fashion. Specifically, HAM identifies hard AEs in terms of their step sizes needed to cross the decision boundary when calculating loss value. Besides, an early-dropping mechanism is incorporated to discard the easy examples at the initial stages of AE generation, resulting in efficient AT. Extensive experimental results on CIFAR-10, SVHN, and Imagenette demonstrate that HAM achieves significant improvement in robust fairness while reducing computational cost compared to several state-of-the-art adversarial training methods. The code will be made publicly available.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.