Computer Science > Computer Vision and Pattern Recognition
[Submitted on 22 Nov 2023]
Title:The Challenges of Image Generation Models in Generating Multi-Component Images
View PDFAbstract:Recent advances in text-to-image generators have led to substantial capabilities in image generation. However, the complexity of prompts acts as a bottleneck in the quality of images generated. A particular under-explored facet is the ability of generative models to create high-quality images comprising multiple components given as a prior. In this paper, we propose and validate a metric called Components Inclusion Score (CIS) to evaluate the extent to which a model can correctly generate multiple components. Our results reveal that the evaluated models struggle to incorporate all the visual elements from prompts with multiple components (8.53% drop in CIS per component for all evaluated models). We also identify a significant decline in the quality of the images and context awareness within an image as the number of components increased (15.91% decrease in inception Score and 9.62% increase in Frechet Inception Distance). To remedy this issue, we fine-tuned Stable Diffusion V2 on a custom-created test dataset with multiple components, outperforming its vanilla counterpart. To conclude, these findings reveal a critical limitation in existing text-to-image generators, shedding light on the challenge of generating multiple components within a single image using a complex prompt.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.