Computer Science > Machine Learning
[Submitted on 23 Nov 2023]
Title:Which Matters Most in Making Fund Investment Decisions? A Multi-granularity Graph Disentangled Learning Framework
View PDFAbstract:In this paper, we highlight that both conformity and risk preference matter in making fund investment decisions beyond personal interest and seek to jointly characterize these aspects in a disentangled manner. Consequently, we develop a novel M ulti-granularity Graph Disentangled Learning framework named MGDL to effectively perform intelligent matching of fund investment products. Benefiting from the well-established fund graph and the attention module, multi-granularity user representations are derived from historical behaviors to separately express personal interest, conformity and risk preference in a fine-grained way. To attain stronger disentangled representations with specific semantics, MGDL explicitly involve two self-supervised signals, i.e., fund type based contrasts and fund popularity. Extensive experiments in offline and online environments verify the effectiveness of MGDL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.