Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Sep 2023]
Title:Rink-Agnostic Hockey Rink Registration
View PDFAbstract:Hockey rink registration is a useful tool for aiding and automating sports analysis. When combined with player tracking, it can provide location information of players on the rink by estimating a homography matrix that can warp broadcast video frames onto an overhead template of the rink, or vice versa. However, most existing techniques require accurate ground truth information, which can take many hours to annotate, and only work on the trained rink types. In this paper, we propose a generalized rink registration pipeline that, once trained, can be applied to both seen and unseen rink types with only an overhead rink template and the video frame as inputs. Our pipeline uses domain adaptation techniques, semi-supervised learning, and synthetic data during training to achieve this ability and overcome the lack of non-NHL training data. The proposed method is evaluated on both NHL (source) and non-NHL (target) rink data and the results demonstrate that our approach can generalize to non-NHL rinks, while maintaining competitive performance on NHL rinks.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.