Physics > Geophysics
[Submitted on 12 Mar 2024]
Title:Learning on the correct class for domain inverse problems of gravimetry
View PDF HTML (experimental)Abstract:We consider end-to-end learning approaches for inverse problems of gravimetry. Due to ill-posedness of the inverse gravimetry, the reliability of learning approaches is questionable. To deal with this problem, we propose the strategy of learning on the correct class. The well-posedness theorems are employed when designing the neural-network architecture and constructing the training set. Given the density-contrast function as a priori information, the domain of mass can be uniquely determined under certain constrains, and the domain inverse problem is a correct class of the inverse gravimetry. Under this correct class, we design the neural network for learning by mimicking the level-set formulation for the inverse gravimetry. Numerical examples illustrate that the method is able to recover mass models with non-constant density contrast.
Current browse context:
physics.geo-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.