Mathematics > Numerical Analysis
[Submitted on 28 Mar 2024 (v1), last revised 25 Nov 2024 (this version, v2)]
Title:A third-order trigonometric integrator with low regularity for the semilinear Klein-Gordon equation
View PDF HTML (experimental)Abstract:In this paper, we propose and analyse a novel third-order low-regularity trigonometric integrator for the semilinear Klein-Gordon equation with non-smooth solution in the $d$-dimensional space, where $d=1,2,3$. The integrator is constructed based on the full use of Duhamel's formula and the employment of a twisted function tailored for trigonometric integrals. Robust error analysis is conducted, demonstrating that the proposed scheme achieves third-order accuracy in the energy space under a weak regularity requirement in $H^{1+\max(\mu,1)}(\mathbb{T}^d)\times H^{\max(\mu,1)}(\mathbb{T}^d)$ with $\mu> \frac{d}{2}$. A numerical experiment shows that the proposed third-order low-regularity integrator is much more accurate than some well-known exponential integrators of order three for approximating the Klein-Gordon equation with non-smooth solutions.
Submission history
From: Bin Wang [view email][v1] Thu, 28 Mar 2024 16:20:30 UTC (304 KB)
[v2] Mon, 25 Nov 2024 06:50:45 UTC (340 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.