Computer Science > Networking and Internet Architecture
[Submitted on 23 Apr 2024]
Title:Understanding IoT Domain Names: Analysis and Classification Using Machine Learning
View PDF HTML (experimental)Abstract:In this paper, we investigate the domain names of servers on the Internet that are accessed by IoT devices performing machine-to-machine communications. Using machine learning, we classify between them and domain names of servers contacted by other types of devices. By surveying past studies that used testbeds with real-world devices and using lists of top visited websites, we construct lists of domain names of both types of servers. We study the statistical properties of the domain name lists and train six machine learning models to perform the classification. The word embedding technique we use to get the real-value representation of the domain names is Word2vec. Among the models we train, Random Forest achieves the highest performance in classifying the domain names, yielding the highest accuracy, precision, recall, and F1 score. Our work offers novel insights to IoT, potentially informing protocol design and aiding in network security and performance monitoring.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.