Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Apr 2024]
Title:Efficient Higher-order Convolution for Small Kernels in Deep Learning
View PDFAbstract:Deep convolutional neural networks (DCNNs) are a class of artificial neural networks, primarily for computer vision tasks such as segmentation and classification. Many nonlinear operations, such as activation functions and pooling strategies, are used in DCNNs to enhance their ability to process different signals with different tasks. Conceptional convolution, a linear filter, is the essential component of DCNNs while nonlinear convolution is generally implemented as higher-order Volterra filters, However, for Volterra filtering, significant memory and computational costs pose a primary limitation for its widespread application in DCNN applications. In this study, we propose a novel method to perform higher-order Volterra filtering with lower memory and computation cost in forward and backward pass in DCNN training. The proposed method demonstrates computational advantages compared with conventional Volterra filter implementation. Furthermore, based on the proposed method, a new attention module called Higher-order Local Attention Block (HLA) is proposed and tested on CIFAR-100 dataset, which shows competitive improvement for classification task. Source code is available at: this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.