Computer Science > Machine Learning
[Submitted on 31 May 2024 (v1), last revised 6 Aug 2024 (this version, v2)]
Title:Shape Constraints in Symbolic Regression using Penalized Least Squares
View PDF HTML (experimental)Abstract:We study the addition of shape constraints (SC) and their consideration during the parameter identification step of symbolic regression (SR). SC serve as a means to introduce prior knowledge about the shape of the otherwise unknown model function into SR. Unlike previous works that have explored SC in SR, we propose minimizing SC violations during parameter identification using gradient-based numerical optimization. We test three algorithm variants to evaluate their performance in identifying three symbolic expressions from synthetically generated data sets. This paper examines two benchmark scenarios: one with varying noise levels and another with reduced amounts of training data. The results indicate that incorporating SC into the expression search is particularly beneficial when data is scarce. Compared to using SC only in the selection process, our approach of minimizing violations during parameter identification shows a statistically significant benefit in some of our test cases, without being significantly worse in any instance.
Submission history
From: Roland Herzog [view email][v1] Fri, 31 May 2024 14:01:12 UTC (710 KB)
[v2] Tue, 6 Aug 2024 10:45:42 UTC (770 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.