Computer Science > Information Theory
[Submitted on 21 Jun 2024]
Title:On the Computing and Communication Tradeoff in Reasoning-Based Multi-User Semantic Communications
View PDF HTML (experimental)Abstract:Semantic communication (SC) is recognized as a promising approach for enabling reliable communication with minimal data transfer while maintaining seamless connectivity for a group of wireless users. Unlocking the advantages of SC for multi-user cases requires revisiting how communication and computing resources are allocated. This reassessment should consider the reasoning abilities of end-users, enabling receiving nodes to fill in missing information or anticipate future events more effectively. Yet, state-of-the-art SC systems primarily focus on resource allocation through compression based on semantic relevance, while overlooking the underlying data generation mechanisms and the tradeoff between communications and computing. Thus, they cannot help prevent a disruption in connectivity. In contrast, in this paper, a novel framework for computing and communication resource allocation is proposed that seeks to demonstrate how SC systems with reasoning capabilities at the end nodes can improve reliability in an end-to-end multi-user wireless system with intermittent communication links. Towards this end, a novel reasoning-aware SC system is proposed for enabling users to utilize their local computing resources to reason the representations when the communication links are unavailable. To optimize communication and computing resource allocation in this system, a noncooperative game is formulated among multiple users whose objective is to maximize the effective semantic information (computed as a product of reliability and semantic information) while controlling the number of semantically relevant links that are disrupted. Simulation results show that the proposed reasoning-aware SC system results in at least a $16.6\%$ enhancement in throughput and a significant improvement in reliability compared to classical communications systems that do not incorporate reasoning.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.