Electrical Engineering and Systems Science > Signal Processing
[Submitted on 17 Aug 2024]
Title:ADformer: A Multi-Granularity Transformer for EEG-Based Alzheimer's Disease Assessment
View PDF HTML (experimental)Abstract:Electroencephalogram (EEG) has emerged as a cost-effective and efficient method for supporting neurologists in assessing Alzheimer's disease (AD). Existing approaches predominantly utilize handcrafted features or Convolutional Neural Network (CNN)-based methods. However, the potential of the transformer architecture, which has shown promising results in various time series analysis tasks, remains underexplored in interpreting EEG for AD assessment. Furthermore, most studies are evaluated on the subject-dependent setup but often overlook the significance of the subject-independent setup. To address these gaps, we present ADformer, a novel multi-granularity transformer designed to capture temporal and spatial features to learn effective EEG representations. We employ multi-granularity data embedding across both dimensions and utilize self-attention to learn local features within each granularity and global features among different granularities. We conduct experiments across 5 datasets with a total of 525 subjects in setups including subject-dependent, subject-independent, and leave-subjects-out. Our results show that ADformer outperforms existing methods in most evaluations, achieving F1 scores of 75.19% and 93.58% on two large datasets with 65 subjects and 126 subjects, respectively, in distinguishing AD and healthy control (HC) subjects under the challenging subject-independent setup.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.