Computer Science > Performance
[Submitted on 1 Sep 2024 (v1), last revised 4 Oct 2024 (this version, v3)]
Title:Scaler: Efficient and Effective Cross Flow Analysis
View PDF HTML (experimental)Abstract:Performance analysis is challenging as different components (e.g.,different libraries, and applications) of a complex system can interact with each other. However, few existing tools focus on understanding such interactions. To bridge this gap, we propose a novel analysis method "Cross Flow Analysis (XFA)" that monitors the interactions/flows across these components. We also built the Scaler profiler that provides a holistic view of the time spent on each component (e.g., library or application) and every API inside each component. This paper proposes multiple new techniques, such as Universal Shadow Table, and Relation-Aware Data Folding. These techniques enable Scaler to achieve low runtime overhead, low memory overhead, and high profiling accuracy. Based on our extensive experimental results, Scaler detects multiple unknown performance issues inside widely-used applications, and therefore will be a useful complement to existing work.
The reproduction package including the source code, benchmarks, and evaluation scripts, can be found at this https URL.
Submission history
From: Steven (Jiaxun) Tang [view email][v1] Sun, 1 Sep 2024 22:06:58 UTC (3,104 KB)
[v2] Mon, 9 Sep 2024 19:38:41 UTC (3,106 KB)
[v3] Fri, 4 Oct 2024 19:36:01 UTC (3,123 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.