Computer Science > Graphics
[Submitted on 9 Oct 2024 (v1), last revised 14 Oct 2024 (this version, v2)]
Title:Focal Surface Holographic Light Transport using Learned Spatially Adaptive Convolutions
View PDF HTML (experimental)Abstract:Computer-Generated Holography (CGH) is a set of algorithmic methods for identifying holograms that reconstruct Three-Dimensional (3D) scenes in holographic displays. CGH algorithms decompose 3D scenes into multiplanes at different depth levels and rely on simulations of light that propagated from a source plane to a targeted plane. Thus, for n planes, CGH typically optimizes holograms using n plane-to-plane light transport simulations, leading to major time and computational demands. Our work replaces multiple planes with a focal surface and introduces a learned light transport model that could propagate a light field from a source plane to the focal surface in a single inference. Our learned light transport model leverages spatially adaptive convolution to achieve depth-varying propagation demanded by targeted focal surfaces. The proposed model reduces the hologram optimization process up to 1.5x, which contributes to hologram dataset generation and the training of future learned CGH models.
Submission history
From: Chuanjun Zheng [view email][v1] Wed, 9 Oct 2024 13:17:22 UTC (25,204 KB)
[v2] Mon, 14 Oct 2024 12:53:50 UTC (25,213 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.