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ABSTRACT
Local Differential Privacy (LDP) allows answering queries on

users data while maintaining their privacy. Queries are often is-

sued on multidimensional datasets with categorical and numeric

dimensions. In this paper, we tackle the problem of answering

counting queries over multidimensional datasets with categori-

cal and numeric dimensions under LDP. In the setting without

a trusted central agent, the user’s private dimensions are firstly

perturbed locally to preserve privacy and then sent to an ag-

gregator who will be able to estimate answers to queries. We

build our approach on the existing idea of using grids. Mapping

users dimensions into grids which are perturbed and sent to the

aggregator so it can estimate the real data distributions to an-

swer different queries on the dimensions collected. Finer-grained

grids lead to greater error due to noises, while coarser-grained

ones result in greater error due to biases. We propose optimizing

the construction of grids taking into consideration a number of

different factors to obtain better accuracy. Also, we propose to

adaptively select the LDP algorithm that based on the grid char-

acteristics will provide the better utility. We conduct experiments

on real and synthetic datasets and compare our solution with

existing approaches.

1 INTRODUCTION
In the past decade, the evolution of Internet-connected devices

(e.g., smart devices, Internet of Things appliances) has acceler-

ated the proliferation of the mobile Internet and spurred a new

wave of mobile applications, leading to an unprecedented and

ever-increasing amount of data [6]. Organizations are interested

in collecting users’ data to improve their applications and guide

business decisions. However, collecting and analyzing data has

incurred serious privacy issues since such data may contain users’

sensitive information [22, 49]. Moreover, users’ private data are

susceptible to attacks and disclosure through advanced data fu-

sion, and analysis techniques [41]. Thus, organizations must pro-

vide rigorous privacy guarantees on how users’ data is collected

and analyzed.

Towards privacy-preserving, differential privacy (DP) [11]

has been proposed with strict mathematical proofs capable of

providing each user with strong privacy guarantees. DP does not

depend on attackers’ background knowledge and has been widely

adopted in many real-world applications at Google [13], Apple

[36], Microsoft [8], and Uber [20]. The centralized setting of DP

assumes that there is a trusted data collector who holds users’

exact data and adds noise in the analytical process to satisfy DP.

However, in many online and crowdsourcing applications, the

servers may not be trusted by users who prefer that their data

does not leave their devices (e.g., smartphones, wearable devices)
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unprotected. To address that scenario where central DP is not

applicable, Local Differential Privacy (LDP) [24] was proposed

as a distributed variant of DP that does not require a trusted

third party and provides privacy guarantees for each user locally.

In the local setting, a randomized algorithm is used to perturb

each user’s private data locally so it can then be sent to a data

collector. Hence, the data collector will never have access to the

true data of each user, and LDP guarantees that the likelihood

of any specific output of the randomized algorithm varies little

with input, i.e., each user’s true data.

Typically, users’ data records include multiple dimensions that

are often numerical (e.g., age, salary) or categorical (e.g., gender,
race) attributes [40]. In this paper, we study the problem of esti-

mating frequencies on multi-dimensional data with categorical

and numerical attributes while each user’s private data is col-

lected under LDP. For example, consider Table 1 to represent the

data of users of a particular application. Our approach enables a

service provider to estimate the answer of frequency queries with

equality and/or range constraints such as the following query:

SELECT COUNT(*) FROM T WHERE Age BETWEEN 30 AND 60
AND Education IN (’Doctorate’, ’Masters’) AND Salary <= 80k.

Age Education Sex Salary Capital gain
1 29 Bachelors Male 60k 2174

2 55 Doctorate Female 100k 14084

3 48 Masters Female 80k 5178

4 35 Some-college Male 50k 1301

5 23 Bachelors Female 45k 880

Table 1: Example of dataset 𝑇 with 5 dimensions

There are several challenges regarding solving this problem,

including 1) capturing the correlations among different attributes,

2) avoiding the curse of dimensionality, and 3) dealing with at-

tributes with large domains. A solution must be able to deal

with all these aspects simultaneously; otherwise, it will have

poor utility [45]. The main idea to tackle this problem is to use

two-dimensional grids to map, using binning, two-dimensional

domains of all combinations of two data attributes. Once all these

grids are constructed, one can answer any higher dimensional

queries from them. When dealing with range constraints from

a query, there is the possibility that a grid’s cell is partially in-

cluded in the answer. One approach is to assume that the data

distribution is uniform, which may incur higher errors. Another

approach is to combine the two-dimensional grids with other one-

dimensional grids [45]. The purpose of one-dimensional grids is

to capture finer-grained information on the distribution of each

attribute. In this work, we experiment with both approaches and

make further enhancements to each strategy. The total number

of grids depends on the number of attributes in the dataset. To im-

prove the utility, we choose to divide the population of users into

groups, and each group will be responsible for collecting infor-

mation from one grid. Each user reports a perturbed grid under

 

 

Series ISSN: 2367-2005 671 10.48786/edbt.2023.56

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.56


LDP to the aggregator. With all reports, the aggregator estimates

the frequency of each grid cell. After that, in the post-processing

phase, we remove the negative frequency estimations since it is

known that all individual frequencies should be non-negative,

and summing all of them, the result should be one. Also, in the

post-processing phase, since each attribute is involved in vari-

ous grids, we make the estimations consistent for each attribute

across respective grids, which helps to improve utility.

The most challenging task here is determining the best size for

each grid. A finer-grained grid leads tomore significant errors due

to noises since, under LDP, one has to perturb each cell. The more

cells, the higher the total noisy error. However, coarser-grained

grids will lead to high error due to bias. Choosing the size of the

grids can be viewed as a bias-variance tradeoff. To decide on the

exact size of each grid, we thoroughly analyze the error involved

when answering a query. The decision will be based on which

attributes are in the grid (grids can be categorical, numerical,

numerical × numerical, categorical × categorical, numerical ×
categorical), the query selectivity on each dimension, the number

of users, privacy budget and a data distribution property. In this

work, we also study different frequency oracle (FO) protocols

when estimating the frequencies of grids’ cells. Once we have

determined the exact size of the grid, we dynamically choose

what FO will lead to a better utility for that specific grid. By using

2-D grids, we are able to capture correlation among attributes

and avoid the curse of dimensionality. By carefully binning for

each grid, we avoid the problem of dealing with large domains.

Other strategies have used grids [30, 45]. However, we pro-

pose a novel approach when using grids. Specifically, 1) We can

support a broader range of applications and analysis by enabling

querying with range and point constraints. 2) We leverage dif-

ferent frequency oracle protocols with different utility character-

istics on a per-grid strategy since each grid may have different

sizes. 3) We allow the aggregator to incorporate the knowledge

of query selectivity prior to building the grids. 4) We calculate

grid dimensions on a per-grid strategy. Using the same grid size

for all grids as in [45] will diminish utility. Also, we avoid split-

ting the privacy budget as in [30]. Finally, 5) We allow cells to

have different sizes avoiding the limitation of having to choose a

sub-optimal dimension size in order to make it divisible by the

domain (Explained in Section 3.2). Therefore, our approach not

only improves utility but attends a wider range of applications

and analysis.

Contributions. In summary, this paper makes the following

contributions:

• We study the use different frequency oracle protocols

when collecting data under LDP using grids. We propose a

new framework that adaptively selects the best-performing

frequency oracle protocol for each data grid to achieve

lower estimation errors.

• We propose a new approach to answer frequency queries

with point and range constraints, under LDP, on multi-

dimensional datasets. By studying the sources of error

and incorporating prior knowledge on queries selectivity,

our strategy design enables capturing data characteristics

more precisely, resulting in high utility.

• We extensively experiment with our solution under differ-

ent query scenarios and datasets (synthetic and real ones),

comparing our results against existing approaches.

Organization. Section 2 presents the background and essen-

tial definitions used throughout the work. In Section 3, we present

the related work and discuss how the main existing approaches

work and their limitations. Section 4 formalizes the problem tack-

led in this work. Section 5 introduces the step-by-step of our

approach while carefully justifying decisions taken. Experimen-

tal results are shown in Section 6. Finally, Section 7 concludes

this work.

2 BACKGROUND AND DEFINITIONS
2.1 Local Differential Privacy
We consider the scenario where users do not trust the server and

require formal privacy guarantees before sharing their data. In

this work, we adopt the local model of differential privacy (LDP)

[10], also known as the randomized response model. Under LDP,

sensitive information 𝑣 from each user is encoded by a random-

ized algorithm Ψ, and its output Ψ(𝑣) is sent to the aggregator,
which is responsible for collecting all users’ reports. Intuitively,

LDP guarantees that, no matter what the value of Ψ(𝑣) is, it is
approximately equally as likely to be a result of perturbing 𝑣 as

any other 𝑣 ′ differing from 𝑣 . Therefore, if Ψ(𝑣), instead of 𝑣 , is

collected, the users never reveal their private value 𝑣 . The user’s

private 𝑣 degree of privacy is controlled by the privacy budget 𝜖 .

More formally,

DEFINITION 1 (Local Differential Privacy) An algorithm Ψ(·)
satisfies 𝜖-local differential privacy (𝜖-LDP), where 𝜖 ≥ 0, if and

only if for any pair of inputs (𝑣, 𝑣 ′), and any set 𝑅 of possible

outputs of Ψ, we have

𝑃𝑟 [Ψ(𝑣) ∈ 𝑅] ≤ 𝑒𝜖𝑃𝑟 [Ψ(𝑣 ′) ∈ 𝑅]

2.2 Frequency Oracles
A frequency oracle (FO) protocol can be used to estimate the

frequency of any value 𝑣 ∈ 𝐷 under LDP, where 𝐷 is the domain.

A FO consists of two algorithms. The first one is Ψ, which users

use locally to perturb their private data. The second one is Φ,
and the aggregator uses it to estimate the frequencies based on

the perturb data received. A FO can be used in many different

LDP tasks, and most problems can be modeled as a frequency

estimation problem. We present below two FO used in this work.

2.2.1 Generalized Randomized Response (GRR). Randomized

Response [43] was introduced for binary responses but it can

easily be generalized to larger domains. In the GRR, each user

with private value 𝑣 ∈ 𝐷 sends their true value 𝑣 with probability

𝑝 . Otherwise, with probability 1 − 𝑝 , users sends a randomly

chosen value 𝑣 ′ ∈ 𝐷 . Formally, the perturbation algorithm is

∀𝑥 ∈𝐷 𝑃𝑟
[
Ψ𝐺𝑅𝑅 (𝜖 ) (𝑣) = 𝑥

]
=

{
𝑝 = 𝑒𝜖

𝑒𝜖+|𝐷 |−1
if x = v

𝑞 =
1−𝑝
|𝐷 |−1

= 1

𝑒𝜖+|𝐷 |−1
if x ≠ v

GRR satisfies 𝜖-LDP since
𝑝
𝑞 = 𝑒𝜖 . From a population of 𝑛

users, the aggregator receives a vector x =
〈
𝑥1, 𝑥2, ...𝑥𝑛

〉
of length

|x| = 𝑛 where 𝑥𝑖 ∈ 𝐷 is the reported value of the i-th user. Then,

it can estimate the frequency of 𝑣 ∈ 𝐷 , which consists of the ratio

of users with private value 𝑣 among all 𝑛 users. Considering𝐶 (𝑛)
as the number of times 𝑣 appears in vector x, the algorithm for

estimating the frequency of 𝑣 ∈ 𝐷 is

Φ𝐺𝑅𝑅 (𝜖 ) (𝑣) :=
𝐶 (𝑣)/𝑛 − 𝑞

𝑝 − 𝑞 =

𝐶 (𝑣)
𝑛 − 1

𝑒𝜖+|𝐷 |−1

𝑒𝜖−1

𝑒𝜖+|𝐷 |−1

(1)
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It is shown, in [38], that this is an unbiased estimation of the

true count, and the variance for this estimation is

𝑉𝑎𝑟
[
Φ𝐺𝑅𝑅 (𝜖 ) (𝑣)

]
=
𝑒𝜖 + |𝐷 | − 2

𝑛(𝑒𝜖 − 1)2
(2)

Since variance 2 is linear in |𝐷 |, the accuracy of this protocol

decreases when the domain size |𝐷 | increases.

2.2.2 Optimized Local Hashing (OLH). The Optimized Local

Hashing [38] protocol tackles the problem of dealing with large

domains observed in GRR by adopting a hash function to map an

input value into a smaller domain of size 𝑔. It applies randomized

response to the hashed value. In this protocol, it is crucial to

notice that both the hashing step and the randomized step result

in information loss. There is a tradeoff when choosing the value

of 𝑔. One must choose between losing information during the

randomization step or the hashing step. In [38], to minimize the

variance, the value of 𝑔 should be ⌈𝑒𝜖 + 1⌉. The hashing process

uses a universal hash function family called H such that each

𝐻 ∈ H takes as input a value in 𝐷 and outputs a value in 1...𝑔.

The protocol used to report a value using OLH is

Ψ𝑂𝐿𝐻 (𝜖 ) (𝑣) :=
〈
𝐻,Ψ𝐺𝑅𝑅 (𝜖 ) (𝐻 (𝑣))

〉
Let

〈
𝐻 𝑖 , 𝑥𝑖

〉
be the report from the i-th user. To compute the

the frequency of each 𝑣 ∈ 𝐷 , the aggregator first computes𝐶 (𝑣) =
|{ 𝑗 |𝐻 𝑗 (𝑣) = 𝑥 𝑗 }| = ∑

𝑗 ∈𝑛 1{𝐻 𝑗 (𝑣)=𝑥 𝑗 } , which is the number of

user reports that supports the value 𝑣 . After that, the aggregator

transforms 𝐶 (𝑣) to its unbiased estimation

Φ𝑂𝐿𝐻 (𝜖 ) (𝑣) :=
𝐶 (𝑣) − 𝑛/𝑔
𝑝 − 1/𝑔

In [38], the variance found for that estimation is

𝑉𝑎𝑟
[
Φ𝑂𝐿𝐻 (𝜖 ) (𝑣)

]
=

4𝑒𝜖

𝑛(𝑒𝜖 − 1)

3 RELATEDWORK
Wang et al. [37] proposed LDP mechanisms for collecting multi-

dimensional data and estimating the frequency and mean values.

In their mechanism, each user submits 𝑘 (instead of 𝑑) attributes

with privacy budget 𝜖/𝑑 . Arcolezi et al. [3] focused on estimating

frequencies on longitudinal multi-dimensional data collections.

Their strategy randomly samples a single attribute and chooses

the best frequency oracle protocol to apply in the two rounds of

sanitization. Li et al. [25] propose the SquareWave (SW) approach

for reconstructing the distribution of an ordinal attribute. Ren et

al. [34] generalize the Expectation Maximization algorithm for

estimating the joint distribution of two attributes. Cormode et

al. [7] refine and analyze how to release marginals via transfor-

mations under LDP. Zhang et al. [48] proposed an approach for

marginal release under LDP that adapts the ideas of consistency

enforcement and maximum entropy estimation from PriView

[31]. Liu et al. [27] proposed an approach that collects data under

LDP to generate synthetic datasets that have an approximate

joint distribution with the actual dataset. The work introduced

an incremental learning-based probabilistic graphical model con-

struction method and a new marginal calculation method for the

large cliques in the context of LDP.

Gursoy et al. [16] introduced a Bayesian adversary to analyze

the privacy relationships of LDP protocols under varying settings.

Linkang et al. [9] dynamically control the build of a tree structure

so that the injected noise is well controlled for maintaining high

utility when answering range queries. Wang et al. [42] selec-

tively collect a few prefix-sums in a data-dependent way, and

answer multidimensional range queries over prefix-sum-based

cubes. Alnemari et al. [2] proposed a Multi-Attribute DisAssem-

bly Mechanism for answering multidimensional range queries

on healthcare data.

Qardaji et al. [30] proposed an adaptive grid method that lays

a coarse-grained grid over the dataset, and then further partitions

each cell according to its noisy count. Both levels of partitions

are then used in answering queries over the dataset. Our work

also uses grids to map users’ multidimensional data. However,

unlike our work, [30] is developed to work in the central setting

of differential privacy, and it works for only two dimensions.

Applying the same idea in the local setting is not trivial. Moreover,

it proposes to split the privacy budget among cell-splitting phases

which could add excessive noise in the local setting.

LDP has also been applied to many different tasks. Estimate

frequency andmean on key-value datasets [15, 26, 44, 46], answer

linear queries [5, 12, 28], collect and answer queries on geospatial

data [14, 19, 47], evolving data [21], continuously answer queries

based on stream [33, 39]. However, their problems are different

from ours. Thus, their solution is unsuitable for answering multi-

dimensional queries in the proposed setting. Below in detail the

works that are most similar to ours.

3.1 HIO
HIO [40] is a hierarchy-based approach designed to answer multi-

dimensional analytical queries under LDP. It supports frequency

queries with categorical and numerical attributes. In HIO, given

k attributes with domain 𝑑 , the aggregator is responsible for

constructing a 1-D hierarchy for each attribute. More specifically,

a 1-D hierarchy is a hierarchical set of intervals with a branching

factor 𝑏. Level 0 corresponds to the root, which covers the entire

domain 𝑑 , and it is recursively partitioned into 𝑏 equally sized

subintervals until the leaves (i.e., smaller intervals) only contain

one value. There are 𝑏 𝑗 intervals on level 𝑗 , each covering 𝑑/𝑏 𝑗
values. There is a total of ℎ = log𝑏 𝑑 + 1 levels, which are called

one-dim levels in a 1-D hierarchy. In HIO, a k-dim level is a group

of k one-dim levels (𝑙1, 𝑙2, ..., 𝑙𝑘 ). Each level corresponds to one 𝑑

1-D hierarchies. Also, consider that a k-dim interval is a group

of k intervals. Each one of these intervals corresponds to one 𝑑

1-D hierarchies. The aggregator is responsible for constructing a

k-dimensional hierarchy with the𝑑 1-D hierarchies. A level in the

k-dimensional hierarchy is said to be a k-dim level. Therefore, a

k-dimensional hierarchy has a total of (ℎ+1)𝑘 k-dim levels. Since

there are 𝑏 𝑗 subintervals in a one-dim level 𝑙 in a 1-D hierarchy,

a k-dim level (𝑙1, 𝑙2, ..., 𝑙𝑘 ) includes
∏𝑘

𝑖=1
𝑏 𝑗𝑖 k-dim intervals. In

the case of a categorical dimension, there are basically two levels;

the first one represents all values. In the second level, we have

all the individual values in the domain 𝑑 . All other intermediate

levels are unnecessary.

HIO also uses the notion of dividing users instead of dividing

the privacy budget 𝜖 . More specifically, the aggregator divides

users into (ℎ+1)𝑘 groups, which accounts for one group reporting
for one k-dim level. Optimized local hashing protocol is used to

get the frequency estimation of all k-dim intervals in all k-dim

levels. Next, the aggregator answers a multidimensional query

by expanding a query 𝑞 to a new k-dimensional query 𝑞′ that is
interested in all k attributes by assigning a specified interval [1, 𝑑]
for each attribute that is not in the query. Next, for each attribute

𝑘 , the aggregator finds the least number of subintervals that can

make up its specified interval in 𝑞′ from its corresponding 1-D
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hierarchy. The last step sums up the noisy frequencies of all the

k-intervals to get the answer of 𝑞.

Limitations. Since users are divided into (ℎ+1)𝑘 groups where

ℎ = log𝑏 𝑑 . The number of users in each group decreases when

the attributes’ domain or the number of dimensions increases.

That translates to a high amount of noise in the frequencies of

k-dim intervals, which results in low utility. Therefore, HIO fails

to handle the curse of dimensionality and attributes with large

domains.

3.2 TDG & HDG
Two-Dimensional Grid (TDG) [45] is a grid-based approach fo-

cused on answering multi-dimensional range queries under LDP.

TDG’s idea is to use binning to partition the 2-D domains of all at-

tribute pairs into 2-D grids that can answer all 2-D range queries

and then estimate the answer of a higher dimensional range query

from the answers of corresponding 2-D range queries. In TDG,

given 𝑘 attributes, the aggregator first generates all attribute

pairs. Then, the aggregator divides𝑚 users into

(𝑘
2

)
groups. Each

group corresponds to a pair of attributes. Next, for each attribute

pair

〈
𝑎𝑖 , 𝑎 𝑗

〉
where 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , the aggregator assigns the

same granularity (i.e., grid size of one dimension) 𝑔2 to construct

a 2-D grid𝐺 (𝑖, 𝑗) by partitioning the 2-D domain 𝑑×𝑑 into𝑔2×𝑔2

2-D cells of equal size. It assumes that all attributes have the same

domain. In particular, each 2-D cell specifies a 2-D subdomain

of 𝑑 × 𝑑 . Each user reports their private value on one of these

grids, and the frequencies of each cell are estimated using OLH.

When answering queries using TDG, the aggregator assumes

that values in a cell are uniformly distributed, which may incur

additional error.

Hybrid-Dimensional Grid (HDG) introduces finer-grained 1-D

grids that, in combination with the information of 2-D grids,

provide better utility when compared to TDG. In HDG, the ag-

gregator constructs 𝑘 1-D grids for the 𝑘 attributes, respectively.

Thus, there are a total of 𝑘 +
(𝑘
2

)
grids in HDG, with users being

divided into 𝑚 = 𝑘 +
(𝑘
2

)
groups. As in TDG, one user group

reports values on one specific grid. The aggregator calculates

the granularity 𝑔1, which is the size of all 1-D grids. Each 1-D

cell specifies a 1-D subdomain of 𝑑 . Finally, the aggregator uses

OLH to obtain noisy frequencies of every cell of 1-D and 2-D

grids. On the aggregator side, negativity is removed from the

estimates. Also, since an attribute is related to multiple grids,

inconsistencies among estimates are removed. After that, 𝜆 − 𝐷
queries are split into

(𝜆
2

)
related 2-D range queries and then from

all answers of these

(𝜆
2

)
2-D queries the answer of the 𝜆 − 𝐷 is

estimated.

Limitations. We identify three main limitations with TDG

and HDG. First, they only support range queries, limiting the

analysis one may be interested in performing. Also, it assumes

that queries will correspond to half the interval of attributes and

that assumption impacts the construction of grids, which limits

the utility gains. Additionally, it uses the same size for every grid.

Moreover, to ensure that 𝑔1 and 𝑔2 are divisible by domain size 𝑑

simultaneously, they take the power of two closest to its derived

value as the final value. These aspects negatively impact accuracy

since the actual size of the grids may be very different from the

optimal one. For instance, suppose the optimal granularity is 25

for 1-D grid, the granularity of the actual grid will be 32, which is

20% larger than the optimal value. Also, suppose that the optimal

value of a 2-D grid is 11 × 11, totaling 121 cells; then the actual

granularity will be 8 × 8 totaling 64 cells. Then the total number

of cells will be almost half of what it should be.

4 PROBLEM STATEMENT
Consider there are k attributes 𝑎1, 𝑎2, ..., 𝑎𝑘 , and those attributes

can be ordinal and categorical. Let each attribute have a domain 𝑑

= 𝑑1, 𝑑2, ..., 𝑑𝑘 . Let 𝑛 be the total number of users. The i-th user’s

record is a 𝑘-dimensional vector expressed by 𝑣𝑖 = ⟨𝑣1

𝑖
, 𝑣2

𝑖
, ..., 𝑣𝑘

𝑖
⟩

where 𝑣𝑡
𝑖
means the value of attribute 𝑎𝑡 in record 𝑣𝑖 . Our solu-

tion tackles the problem of answering multi-dimensional queries

under LDP. Moreover, a multi-dimensional query is a conjunction

of multiple predicates for attributes of interest. A 𝜆-dimensional

query 𝑞 is defined as

𝑞 = (𝑎𝑡1
, 𝑜𝑡1

, 𝑣𝑡1
) ∧ (𝑎𝑡2

, 𝑜𝑡2
, 𝑣𝑡2
) ∧ ... ∧ (𝑎𝑡𝜆 , 𝑜𝑡𝜆 , 𝑣𝑡𝜆 )

where 𝑜𝑡𝑖 ∈ {in, between} specifies an operator, 𝑣𝑡𝑖 is either a set

of size 0 < |𝑣𝑡𝑖 | ≤ 𝑑𝑡1
of categorical values or a range [𝑙𝑡𝑖 , 𝑟𝑡𝑖 ].

Also, 1 ≤ 𝑡𝑖 ≤ 𝑘 , and 𝑡𝑖 ≠ 𝑡 𝑗 when 𝑖 ≠ 𝑗 . Let𝐴𝑞 = {𝑎𝑡𝑖 |1 ≤ 𝑖 ≤ 𝜆}
represent the set of attributes specified in query 𝑞. That means

that a query 𝑞 selects all records whose value of attribute 𝑎𝑡𝑖 is

a specific value when 𝑜𝑡𝑖 is the = (Equals) operator, or 𝑎𝑡𝑖 is in

the set of categorical values when 𝑜𝑡𝑖 = in or 𝑎𝑡𝑖 is between the

range when 𝑜𝑡𝑖 = between. The answer to query 𝑞 is equal to

the count of all records that satisfy all conditions divided by the

number of users 𝑛. Formally, the real answer of query 𝑞 can be

expressed as

˜𝑓𝑞 =
|{𝑣𝑖 |𝑣𝑡𝑖 ∈ 𝑣𝑡 ,∀𝑎𝑡 ∈ 𝐴𝑞}|

𝑛

Consider the example dataset on Table 1 with 𝑛 = 5 users.

User 1, for example, has the following 5-dimensional vector

𝑣3 = ⟨48, 𝑀𝑎𝑠𝑡𝑒𝑟𝑠, 𝐹𝑒𝑚𝑎𝑙𝑒, 80𝑘, 5178⟩. The example query SE-
LECT COUNT(*) FROM TWHERE Age BETWEEN 30 AND 60 AND
Education IN (‘Doctorate’, ‘Masters’) AND Salary <= 80k on Table

1, is interested in attributes 𝐴𝑞 = {𝐴𝑔𝑒, 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑆𝑎𝑙𝑎𝑟𝑦} and
it is represented as 𝑞 = (𝑎𝑡1

= 𝐴𝑔𝑒, 𝑜𝑡1
= 𝐵𝐸𝑇𝑊𝐸𝐸𝑁, 𝑣𝑡1

= [𝑙𝑡𝑖 =
30, 𝑟𝑡𝑖 = 60]) ∧ (𝑎𝑡2

= 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑜𝑡2
= 𝐼𝑁 , 𝑣𝑡2

= {‘𝐷𝑜𝑐𝑡𝑜𝑟𝑎𝑡𝑒 ′,
‘𝑀𝑎𝑠𝑡𝑒𝑟𝑠 ′}) ∧ (𝑎𝑡3

= 𝑆𝑎𝑙𝑎𝑟𝑦, 𝑜𝑡3
= 𝐵𝐸𝑇𝑊𝐸𝐸𝑁, 𝑣𝑡3

= [𝑙𝑡𝑖 =

0, 𝑟𝑡𝑖 = 80000]). The answer to 𝑞 is 1 and
˜𝑓𝑞 = 1

5
= 0.2. Table 2

lists all notations used throughout this work.

Notations Meaning
𝑛 The total number of users

𝑘 Total number of attributes

𝑘𝑛 The number of numerical attributes

𝑘𝑐 The number of categorical attributes

𝑑 The domain size of an attribute

𝑚 The number of user groups

𝑞 A query

𝐴𝑞 The set of attributes in 𝑞

𝜆 The query dimension

𝐿 Total number of cells in a grid

𝑙𝑥 Number of cells in the 𝑥 axis of the grid

𝑙𝑦 Number of cells in the 𝑦 axis of the grid

Table 2: Notations

5 THE FELIP APPROACH
This section presents FELIP, designed to answer, under LDP,

multi-dimensional queries LDP over datasets with numerical and

categorical attributes. FELIP maps users answers to 1-D and 2-D
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grids which are perturbed to satisfy LDP. The first step of FELIP

consists of the aggregator determining the number of grids to be

estimated and dividing the users into groups where each group

is responsible for one grid. In the second step, the aggregator

calculates the dimensions’ size of each grid, and it can leverage

the information it has about the queries’ selectivity. Note that the

grid construction happens on a per-data collection basis. With

one collection, the aggregator can answer all queries. So when

choosing the selectivity, the aggregator can use a precise number

of one specific query it wants to answer, or it can use the average

selectivity of a set of queries. After that, the aggregator sends

to each user one grid configuration. On the user side, each user

projects their answer in the grid, perturbs it under LDP, and sends

it to the aggregator. Next, the aggregator collects all answers and

estimates the frequencies for each cell of every grid. After that,

the post-processing is done. Finally, the aggregator estimates the

answers of all high-dimensional queries.

Within FELIP, we develop two strategies called Optimized Hy-

brid Grid (OHG) and Optimized Uniform Grid (OUG). Since FELIP

collects multiple grids, we argue that the utility can be improved

by dividing users into groups and show the proofs for that when

using OLH and GRR protocols (Section 5.1). Then, we discuss one

of the most important aspects of collecting the data, that is, how

we can optimize the construction of LDP grids by minimizing

the total error while using OLH and GRR protocols (Section 5.2).

Next, we motivate why combining GRR and OLH protocols can

benefit our problem, presenting the adaptive frequency oracle

(Section 5.3). After that, we detail how the aggregator can im-

prove utility by achieving consistency among grids and removing

negative estimations in the post-processing stage (Section 5.4).

Next, we show the algorithms used for building the response

matrix (Section 5.5) and estimating the multi-dimensional query

from its related sub-queries (Section 5.6). Finally, we discuss the

privacy guarantees of our approach and specify the different

sources of error (Section 5.7).

5.1 Population Partitioning
In our approach, we collect, under LDP, information on𝑚 differ-

ent grids, and each grid has 𝐿 cells. One strategy is to divide the

privacy budget into𝑚 parts, and the entire population of 𝑛 users

sends reports for all𝑚 grids, using the sequential composition

[29]. The other strategy is to divide the population into𝑚 groups;

each group is responsible for reporting information about one

specific grid.

Theorem 5.1. The variance of GRR and OLH is smaller when
dividing 𝑛 users into 𝑚 groups instead of dividing the privacy
budget 𝜖 into 𝜖/𝑚.

Proof. The variance when answering a query dividing the

users with GRR is:

𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝑢 ] =𝑚 · 𝑒
𝜖 + 𝐿 − 2

𝑛(𝑒𝜖 − 1)2

and the variance when splitting the budget is:

𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝜖 ] =
𝑒𝜖/𝑚 + 𝐿 − 2

𝑛(𝑒𝜖/𝑚 − 1)2

Then, if we do 𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝜖 ] −𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝑢 ], we have

=
1

𝑛

[
𝑒𝜖/𝑚 + 𝐿 − 2

(𝑒𝜖/𝑚 − 1)2
−𝑚𝑒𝜖 + 𝐿 − 2

(𝑒𝜖 − 1)2

]
=
𝐿 − 2

𝑛

[
1

𝑒𝜖/𝑚 − 1)2
− 𝑚

(𝑒𝜖 − 1)2

]
+

𝑒𝜖/𝑚

𝑛

[
1

𝑒𝜖/𝑚 − 1)2
− 𝑚𝑒𝜖−𝜖/𝑚

(𝑒𝜖 − 1)2

]
=

(𝐿 − 2)
𝑛(𝑒𝜖/𝑚 − 1)2 (𝑒𝜖 − 1)2

[
(𝑒𝜖 − 1)2 −𝑚(𝑒𝜖/𝑚 − 1)2

]
+

𝑒𝜖/𝑚

𝑛(𝑒𝜖/𝑚 − 1)2 (𝑒𝜖 − 1)2
[
(𝑒𝜖 − 1)2 −𝑚𝑒𝜖−𝜖/𝑚 (𝑒𝜖/𝑚 − 1)2

]
Denoting 𝑒𝜖/𝑚 as z and since 𝜖 > 0, 𝑧 > 1, the two first terms

will always be greater than zero and for the two second terms

we have that

(𝑒𝜖 − 1)2 −𝑚(𝑒𝜖/𝑚 − 1)2

=(𝑧𝑚 − 1)2 −𝑚(𝑧 − 1)2

=(𝑧 − 1)2
[
(1 + 𝑧2 + ... + 𝑧𝑚−1)2 −𝑚

]
> 0

Also, we have that

(𝑒𝜖 − 1)2 −𝑚𝑒𝜖−𝜖/𝑚 (𝑒𝜖/𝑚 − 1)2

=(𝑧𝑚 − 1)2 −𝑚𝑧𝑚−1 (𝑧 − 1)2

=(𝑧 − 1)2
[
(1 + 𝑧2 + ... + 𝑧𝑚−1)2 −𝑚𝑧𝑚−1

]
> 0

Therefore,𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝜖 ] −𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝑢 ] > 0. That is, the vari-

ance of the approach that divides the privacy budget𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝜖 ]
is always greater than the variance of the approach that divides

users𝑉𝑎𝑟 [Φ𝐺𝑅𝑅𝑑𝑢 ]. The proof for the OLH protocol is similar to

GRR, and we have that 𝑉𝑎𝑟 [Φ𝑂𝐿𝐻𝑑𝜖
] −𝑉𝑎𝑟 [Φ𝑂𝐿𝐻𝑑𝑢

] > 0. That

is, the approach of dividing the privacy budget 𝑉𝑎𝑟 [Φ𝑂𝐿𝐻𝑑𝜖
] is

always greater than the approach of dividing users𝑉𝑎𝑟 [Φ𝑂𝐿𝐻𝑑𝑢
].

Then, we can conclude that for either protocol, OLH and GRR,

dividing users will achieve better utility than dividing the bud-

get. □

5.2 Constructing Grids with OLH and GRR
This section discusses how grids are constructed for OUG and

OHG while using the OLH and GRR protocols. We design our

strategies to handle numerical and categorical attributes with

different domain sizes. Also, we incorporate knowledge of the

queries’ selectivity. By considering these aspects, we can calculate

more accurate grid sizes, which translates to a higher utility by

balancing the bias-variance tradeoff well. The construction of

grids varies in complexity depending on the grid type. It can be

O(1) for 1-D grids, or it can involve solving an equation system

numerically, which can be done with several different algorithms.

In this work, we use the bisection method in all scenarios, and it

has converged quickly in all of them.

In OUG, given 𝑘 attributes, a total of

(𝑘
2

)
pairs of attributes are

generated, representing all the possible attribute combinations.

The 𝑛 users’ population is randomly divided into

(𝑘
2

)
groups. The

size of a grid is represented by 𝑙𝑥 and 𝑙𝑦 , which refers to the size

of the grid along the 𝑥 and 𝑦 axis, respectively. For each pair

of attributes

〈
𝑎𝑖 , 𝑎 𝑗

〉
where 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , a 2-D grid 𝐺 (𝑖, 𝑗) is

constructed partitioning the 2-D domain [𝑑𝑖 ] x [𝑑 𝑗 ] into 𝑙𝑥 × 𝑙𝑦
2-D cells.

In the OHG strategy, 2-D and 1-D grids are constructed. 1-D

grids are constructed for numerical attributes only. Later, we uti-

lize this information to refine the final answer grid (Section 5.5).
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As in OUG, 2-D grids are constructed for each pair of attributes.

From a total of 𝑘 attributes, 𝑘𝑛 represents the number of numeri-

cal attributes. The population of 𝑛 users is divided into 𝑘𝑛 +
(𝑘
2

)
groups, and each group is responsible for one grid. 2-D grids

are constructed the same way as in OUG. For each numerical

attribute 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑘), 1-D grid 𝐺 (𝑖) is constructed with size 𝑙𝑥 .

Finally, users are asked to report which cell of their assigned 2-D

or 1-D grid their private value is in using the AFO protocol.

While constructing grids, we have to consider the effect of

non-uniformity error in the numerical dimensions. The non-

uniformity error accounts for the difference caused by cells that

intersect the query rectangle but are not contained in it. Since

we do not have access to the actual data distribution, we need

to estimate how many data points are in the intersected cells. A

common approach assumes that the data points are uniformly

distributed in each cell [30, 45]. The magnitude of this error in

any intersected cell, in general, depends on the number of data

points in that cell, and is bounded by it. Thus, the finer the grid’s

granularity, the lower the non-uniformity error.When computing

the size of the grids, we approximate the non-uniformity error

and control the degree of this error by using constants 𝛼1 and 𝛼2

for 1-D and 2-D grids, respectively.

Calculating the size of grids for OLH and GRR.

Numerical 1-D Grids. We consider that the ratio of interval

to the attribute’s domain size i.e., query selectivity is 𝑟𝑥 and the

number of cells in the grid is 𝑙𝑥 . The squared noise and sampling

error for OLH is

(𝑙𝑥 · 𝑟𝑥 ) ·
4𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2
=

4𝑙𝑥𝑟𝑥𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2

For GRR is

(𝑙𝑥 · 𝑟𝑥 ) ·
𝑚(𝑒𝜖 + 𝑙𝑥 − 2)
𝑛(𝑒𝜖 − 1)2

=
𝑙𝑥𝑟𝑥𝑚(𝑒𝜖 + 𝑙𝑥 − 2)

𝑛(𝑒𝜖 − 1)2

The non-uniformity error is

(
𝛼1

𝑙𝑥

)
. The sum of the two errors

for OLH is (𝛼1

𝑙𝑥

)
2

+ 4𝑙𝑥𝑟𝑥𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2
(3)

and for GRR is (𝛼1

𝑙𝑥

)
2

+ 𝑙𝑥𝑟𝑥𝑚(𝑒
𝜖 + 𝑙𝑥 − 2)

𝑛(𝑒𝜖 − 1)2
(4)

We can minimized the sum by taking the partial derivative

with respect to 𝑙𝑥 . For OLH, we have

𝜕

[(
𝛼1

𝑙𝑥

)
2

+ 4𝑙𝑥𝑟𝑥𝑚𝑒𝜖

𝑛 (𝑒𝜖−1)2

]
𝜕𝑙𝑥

=
4𝑒𝜖𝑚𝑟𝑥

𝑛(𝑒𝜖 − 1)2
−

2𝛼2

1

𝑙3𝑥
= 0

𝑙𝑥𝑂𝐿𝐻 =
3

√︄
𝑛𝛼2

1
· (𝑒𝜖 − 1)2

2𝑚𝑟𝑥𝑒
𝜖

(5)

and for GRR, we take the partial derivative of Equation 4 with

respect to 𝑙𝑥 , we have

𝜕

[
(4)

]
𝜕𝑙𝑥

= −2𝛼1

𝑙3𝑥
+ 𝑙𝑥𝑟𝑥𝑚

𝑛(𝑒𝜖 − 1)2
+ (𝑙𝑥 + 𝑒

𝜖 − 2)𝑚𝑠

𝑛(𝑒𝜖 − 1)2
(6)

Then, we find the roots of the Equation 6 and determine 𝑙𝑥𝐺𝑅𝑅 .

Once we have 𝑙𝑥𝑂𝐿𝐻 and 𝑙𝑥𝐺𝑅𝑅 , we determine the size of the

grid (i.e. number of cells).

Categorical 1-D Grids. The size of the grid is equal to the do-

main of the attribute 𝑙𝑥𝑂𝐿𝐻 = 𝑙𝑥𝐺𝑅𝑅 = 𝑑 .

Numerical × Numerical 2-D Grids. We consider that the ratio

of interval to the attribute’s domain size i.e., query selectivity is

𝑟𝑥 and 𝑟𝑦 along the x and y axis respectively. The number of cells

included in the query rectangle is 𝑙𝑥𝑟𝑥 · 𝑙𝑦𝑟𝑦 . Thus, the squared
noise and sampling error for OLH is

𝑙𝑥𝑟𝑥 𝑙𝑦𝑟𝑦 ·
4𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2
=

4𝑙𝑥𝑟𝑥 𝑙𝑦𝑟𝑦𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2
(7)

and for GRR is

(𝑙𝑥𝑟𝑥 · 𝑙𝑦𝑟𝑦) ·
𝑚(𝑒𝜖 + 𝑙𝑥 𝑙𝑦 − 2)

𝑛(𝑒𝜖 − 1)2
=
𝑙𝑥𝑟𝑥 𝑙𝑦𝑟𝑦𝑚(𝑒𝜖 + 𝑙𝑥 𝑙𝑦 − 2)

𝑛(𝑒𝜖 − 1)2
(8)

The number of cells included in the four edges of the query

rectangle is 2(𝑙𝑥𝑟𝑥 +𝑙𝑦𝑟𝑦). The expected sum of frequencies of val-

ues included in these cells is 2(𝑙𝑥𝑟𝑥 + 𝑙𝑦𝑟𝑦) · 1

𝑙𝑥×𝑙𝑦 =
2(𝑙𝑥𝑟𝑥+𝑙𝑦𝑟𝑦 )

𝑙𝑥 𝑙𝑦
.

The non-uniformity error is

(
2𝛼2 (𝑙𝑥𝑟𝑥+𝑙𝑦𝑟𝑦 )

𝑙𝑥 𝑙𝑦

)
2

. The sum of the

two errors for OLH is(
2𝛼2 (𝑙𝑥𝑟𝑥 + 𝑙𝑦𝑟𝑦)

𝑙𝑥 𝑙𝑦

)
2

+
4𝑙𝑥𝑟𝑥 𝑙𝑦𝑟𝑦𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2
(9)

and for GRR is(
2𝛼2 (𝑙𝑥𝑟𝑥 + 𝑙𝑦𝑟𝑦)

𝑙𝑥 𝑙𝑦

)
2

+
𝑙𝑥𝑟𝑥 𝑙𝑦𝑟𝑦𝑚(𝑒𝜖 + 𝑙𝑥 𝑙𝑦 − 2)

𝑛(𝑒𝜖 − 1)2
(10)

Taking the partial derivative of Equations 9 and 10with respect

to 𝑙𝑥 and 𝑙𝑦 , we get a system of polynomial equations for each

one. Then, we solve them to find the values 𝑙𝑥 and 𝑙𝑦 for each

protocol. The grid’s size for GRR and OLH is 𝑙𝑥𝐺𝑅𝑅 × 𝑙𝑦𝐺𝑅𝑅 and

𝑙𝑥𝑂𝐿𝐻 × 𝑙𝑦𝑂𝐿𝐻 for GRR and OLH respectively.

Categorical x Numerical grid 2-D Grids. For 2-D grids with

one categorical attribute, the dimension with the categorical

values 𝑙𝑦 will have the size of the attribute’s domain. Then, the

task is to calculate the length of the other dimension 𝑙𝑥 . We

consider that the ratio of the interval to the numerical attribute’s

domain size and the categorical attribute’s domain size is 𝑟𝑥 and

𝑟𝑦 respectively. Assuming that there are 𝑙𝑥𝑟𝑥 · 𝑙𝑦𝑟𝑦 cells in the

query. The squared noise and sampling error for OLH is Equation

7 and for GRR is Equation 8. However, in this type of grid, the

number of cells in the border of the query rectangle is 2𝑙𝑦𝑟𝑦 . The

expected sum of frequencies of values included in these cells is

2𝑙𝑦𝑟𝑦 · 1

𝑙𝑥×𝑙𝑦 =
2𝑟𝑦

𝑙𝑥
. Then the squared error from non-uniformity

is

(
2𝛼2𝑟𝑦

𝑙𝑥

)
2

. The sum of the two errors for OLH is(
2𝛼2𝑟𝑦

𝑙𝑥

)
2

+
4𝑙𝑥𝑟𝑥 𝑙𝑦𝑟𝑦𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2
(11)

and for GRR is(
2𝛼2𝑟𝑦

𝑙𝑥

)
2

+
𝑙𝑥𝑟𝑥 𝑙𝑦𝑟𝑦𝑚(𝑒𝜖 + 𝑙𝑥 𝑙𝑦 − 2)

𝑛(𝑒𝜖 − 1)2
(12)

Taking the partial derivative with respect to 𝑙𝑥 , we find the

value of 𝑙𝑥𝑂𝐿𝐻 and 𝑙𝑥𝐺𝑅𝑅 .

Categorical × Categorical 2-D Grids. The size of grids with 2

categorical attributes 𝑎𝑖 , 𝑎 𝑗 corresponds to the size of the product

of the attributes’ domains 𝑙𝑥𝐺𝑅𝑅 = 𝑙𝑥𝑂𝐿𝐻 = 𝑑𝑖 and 𝑙𝑦𝐺𝑅𝑅 =

𝑙𝑦𝑂𝐿𝐻 = 𝑑 𝑗 .
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5.3 Adaptive Frequency Oracle
After we calculate each grid size using the GRR strategy and OLH

strategy (Section 5.2), we need to decide which protocol to choose.

We propose selecting the protocol with the lowest variance for

reporting each specific grid. In the AFO, we make use of two

frequency oracle protocols: GRR and OLH. the variance of AFO

is the following:

𝑉𝑎𝑟 [Φ𝐴𝐹𝑂 (𝜖 ) ] =𝑚𝑖𝑛

(
𝑉𝑎𝑟 [Φ𝐺𝑅𝑅 (𝜖 ) ],𝑉𝑎𝑟 [Φ𝑂𝐿𝐻 (𝜖 ) ]

)
𝑉𝑎𝑟 [Φ𝐴𝐹𝑂 (𝜖 ) ] =𝑚𝑖𝑛

(
𝑒𝜖 + 𝐿 − 2

(𝑒𝜖 − 1)2
,

4𝑒𝜖

(𝑒𝜖 − 1)2

)
·𝑚
𝑛

(13)

5.4 Post-Processing
Answering queries using the information in the grids obtained

from the adaptive frequency oracle is an estimation problem. The

utility can be improved in the post-processing phase by removing

negative estimations and making grids that have attributes in

common consistent.

Removing Negative Estimations. When using the AFO, it is

common to have negative estimations for many values in the do-

main. Moreover, the sum of all frequencies may be different from

one. To minimize the error in estimations in the post-processing

step, one can make every negative estimation have a value of

zero and make all frequencies sum up to 1. Algorithm 1 shows

how we can remove all negative estimations values and make

the sum of all positive frequencies 1. The algorithm’s input is the

grid’s estimations in the form of an estimation vector
˜𝑓 . First, we

make every negative estimation have a value of 0 (line 5). Then,

we sum all remaining estimates and take the average difference

by dividing by the number of positive estimates (line 6 and 7).

Next, we add the difference value to every positive estimate (line

10). We repeat the whole process until all values in the output

estimation vector
˜𝑓 ′𝑣 are non-negative, and all the frequencies

sum up to 1. We call this algorithm for each estimated grid.

Algorithm 1: Algorithm for removing negative estima-

tions

Input :Estimation vector
˜𝑓𝑣

Output :Estimation vector
˜𝑓 ′𝑣

1 ˜𝑓 ′𝑣 ← ˜𝑓𝑣 ;

2 while any negative value in ˜𝑓 ′𝑣 or
∑

˜𝑓 ′𝑣 > 𝑛 do
3 for 𝑖 ← 0 to | ˜𝑓𝑣 | do
4 if ˜𝑓 ′𝑣 [i] < 0 then
5 ˜𝑓 ′𝑣 [i]← 0;

6 sum← ∑𝑗= | ˜𝑓𝑣 |
𝑗=0

˜𝑓 ′𝑣 ( 𝑗);
7 diff← 𝑛−𝑠𝑢𝑚

| ˜𝑓𝑣 |
;

8 for 𝑖 ← 0 to | ˜𝑓𝑣 | do
9 if ˜𝑓 ′𝑣 [i] > 0 then

10 ˜𝑓 ′𝑣 [i]← ˜𝑓 ′𝑣 [i] + diff;

11 return ˜𝑓 ′𝑣 ;

Consistency Step. When different grids have some attributes

in common, those attributes are estimated multiple times. The

utility will increase if these estimates are utilized together [45, 48].

We apply consistency techniques similar to [18]. The consistency

of estimates among grids can be achieved with Algorithm 2. Each

attribute 𝑎 is related to𝑤 grids in total, which includes one 1-D

grid and𝑤−1 2-D grids. Let𝐺 (𝑎,𝑤) be the w-th grid that is related
to attribute 𝑎 and assume each grid has a set of cells 𝐿𝐺 (𝑎,𝑤) .

We define 𝑆𝐺 (𝑎,𝑤) (𝑖) to be the sum of frequencies of 𝐺 (𝑎,𝑤) ’s
cells that are in a subdomain value 𝐷𝐺 (𝑎,𝑤) (𝑖) of attribute 𝑎. For
example, suppose an attribute 𝑎 with domain 𝑑 = 50 is related

to a 1-D grid 𝐺 (𝑎,0) , which has 5 cells (|𝐿𝐺 (𝑎,0) | = 5). 𝐿𝐺 (𝑎,0) (0)
represents the first cell of this 1-D grid, and it defines a subdomain

value [0, 9] (range) or 0 (categorical value). The goal is to make

all 𝑆𝐺 (𝑎,𝑤) ( 𝑗) consistent. we compute their weighted average as

𝑆 (𝑎,𝑖) =
∑𝑤

𝑗=1
𝜃 𝑗 · 𝑆𝐺 (𝑎,𝑤) (𝑖), where 𝜃 𝑗 is the weight of 𝑆𝐺 (𝑎,𝑤) (𝑖).

The values of the weights 𝜃 impact the variance of 𝑆 (𝑎,𝑖) . To
minimize the variance of 𝑆 (𝑎,𝑖)

𝑉𝑎𝑟 [𝑆 (𝑎,𝑖) ] =
𝑤∑︁
𝑗=1

𝜃2

𝑗 ·𝑉𝑎𝑟 [𝑆𝐺 (𝑎,𝑤) (𝑖)] =
𝑤∑︁
𝑗=1

𝜃2

𝑗 · |𝐿𝐺 (𝑎,𝑤) ( 𝑗) | ·𝑉𝑎𝑟0

where 𝑉𝑎𝑟0 is the basic variance for estimating a single cell.

|𝐿𝐺 (𝑎,𝑤) ( 𝑗) | for 2D grids equals the length of grids 𝐺 (𝑎,𝑤) in the

axis of attribute 𝑎 and for 1D grids equals the length of the cor-

responding 1D grid of 𝑎 divided by the length of grids 𝐺 (𝑎,𝑤) in
the axis of attribute 𝑎. Based on the analysis in [48], we calculate

in Line 4 each grid’s weight 𝜃 𝑗 =

1

𝐿𝐺 (𝑎,𝑤) ( 𝑗 ) |∑𝑤
𝑖=𝑗

1

|𝐿𝐺 (𝑎,𝑤) ( 𝑗 ) |
.

Next, for each subdomain value in the grid𝐺 (𝑎,𝑤) (Line 5), we
calculate (Line 8) the optimal weighted average

𝑆 (𝑎,𝑖) =

∑𝑤
𝑖=𝑗

1

|𝐿𝐺 (𝑎,𝑤) ( 𝑗) |
· 𝑆𝐺 (𝑎,𝑤) (𝑖)∑𝑤

𝑗=1

1

|𝐿𝐺 (𝑎,𝑤) ( 𝑗) |

The next step (Line 11) is to make every sum of frequencies

𝑆𝐺 (𝑎,𝑤) (𝑖) have value 𝑆 (𝑎,𝑖) . To achieve that, we need to update

its frequency as

𝑆𝐺 (𝑎,𝑤) (𝑖) = 𝑆𝐺 (𝑎,𝑤) (𝑖) +
(
𝑆 (𝑎,𝑖) − 𝑆𝐺 (𝑎,𝑤) (𝑖)

)
/|𝐿𝐺 (𝑎,𝑤) (𝑖) |

It is essential to mention that a later consistency step does not

invalidate the consistency resulting from the previous steps [32].

Since a consistency step may introduce negative estimations,

Algorithm 1 has to be called after the consistency algorithm

finishes. Removing negative estimations as the last step in post-

processing.

Note that applying the consistency step may incur negativity

and vice versa. Thus in the post-process, we interchangeably

invoke these two steps multiple times. Since we need to ensure

non-negativity for the response matrix generation (Section 5.5),

we end the post-process with the non-negativity step. While the

last step may again introduce inconsistency, it tends to be very

small.

5.5 Response Matrix
The response matrix generation phase uses 1-D and 2-D grids to

build a matrix for each pair of attributes. The resulting matrices

will be used during the phase of answering queries. This idea

was also explored in [45]. However, in our case, the selection of

the set of related grids Γ is different since we have grids with

categorical dimensions. Each pair of attributes (𝑎𝑖 , 𝑎 𝑗 ) has a cor-
responding response matrix 𝑀 (𝑖, 𝑗) of size 𝑑𝑖 × 𝑑 𝑗 , where the

element𝑀(𝑖, 𝑗) [𝑥,𝑦] represents the estimated frequency of 2-D

value (𝑥,𝑦) in the [𝑑𝑖 ] × [𝑑 𝑗 ] 2-D domain of the attribute pair

(𝑎𝑖 , 𝑎 𝑗 ). If 𝑎𝑖 and 𝑎 𝑗 are categorical attributes, the estimated grid

𝐺 (𝑖, 𝑗) is already the response matrix𝑀 (𝑖, 𝑗). Otherwise, we need
to build𝑀(𝑖, 𝑗) by invoking an efficient estimation method called
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Algorithm 2: Consistency Algorithm

1 Initialize vector 𝜃 with𝑤 zeros;

2 for 𝑎 ← 0 to |𝐴| do
3 for 𝑗 ← 0 to𝑤 do

4 𝜃 𝑗 =

1

|𝐿𝐺 (𝑎,𝑤) ( 𝑗 ) |∑𝑤
𝑗=0

1

|𝐿𝐺 (𝑎,𝑤) ( 𝑗 ) |

5 for 𝑖 ← 0 to |𝐷𝐺 (𝑎,𝑤) | do
6 𝑆 (𝑎,𝑖) ←0;

7 for 𝑗 ← 0 to𝑤 do
8 𝑆 (𝑎,𝑖) ←S(𝑎,𝑖) + 𝜃 𝑗 · 𝑆𝐺 (𝑎,𝑤) (𝑖)
9 for 𝑗 ← 0 to𝑤 do

10 for each cell 𝑐 ∈ 𝐿𝐺 (𝑎,𝑤) ( 𝑗) do
11 𝑓𝑐 ← 𝑓𝑐 + 𝑆 (𝑎,𝑖)

Weighted Update [4, 17]. If 𝑎𝑖 and 𝑎 𝑗 are numerical, we build

𝑀 (𝑖, 𝑗) from its related grids Γ = {𝐺 (𝑖),𝐺 ( 𝑗),𝐺 (𝑖, 𝑗)} which rep-

resent the grids of {𝑎𝑖 , 𝑎 𝑗 , (𝑎𝑖 , 𝑎 𝑗 )}, respectively. Note that, If one
of the attributes is categorical, say 𝑎𝑖 , we build𝑀 (𝑖, 𝑗) using only
the grids {𝐺 ( 𝑗),𝐺 (𝑖, 𝑗)}, which corresponds to Γ = {𝑎 𝑗 , (𝑎𝑖 , 𝑎 𝑗 )},
respectively. Algorithm 3 shows the step-by-step of building a

response matrix. First, select the set, denoted by 𝛿 (𝑐), of all 2-D
(𝑥,𝑦) values that contribute to the frequency 𝑓𝑐 of cell 𝑐 from

𝐺 ∈ Γ. For example, suppose that the pair of numerical attributes

(𝑎𝑖 , 𝑎 𝑗 ) have domains 𝑑𝑖 = 100, 𝑑 𝑗 = 50. Its corresponding grid

𝐺 (𝑖, 𝑗) has size 10 × 5 cells. Each cell 𝑐 defines a partition [𝑙𝑖 , 𝑟𝑖 ]
of 𝑑𝑖 and [𝑙 𝑗 , 𝑟 𝑗 ] of 𝑑 𝑗 . The first cell, in the position [0, 0], from

𝐺 (𝑖, 𝑗), for instance, may define the subdomain [0, 9] × [0, 9].
Then, in line 4, we would collect all 2-D values in the subdomain

[0, 9] × [0, 9] i.e., values that contribute to the frequency of 𝑐 .

Once we have all the values 𝛿 (𝑐), the elements in the response

matrix are updated (Lines 8-10). Algorithm 3 is set to converge

when the sum of the changes of all elements in𝑀(𝑖, 𝑗) after each
update process is smaller than a certain threshold. It is shown in

[45] that the threshold should be smaller than
1

𝑛 .

Algorithm 3: Building Response Matrix

Input :Set of related grids Γ, domain sizes 𝑑𝑖 , 𝑑 𝑗
Output :Response matrix𝑀(𝑖, 𝑗)

1 Initialize all 𝑑𝑖 × 𝑑 𝑗 elements in matrix𝑀(𝑖, 𝑗) as
1

𝑑𝑖 ·𝑑 𝑗

while not convergence do
2 for each grid 𝐺 ∈ Γ do
3 for each cell 𝑐 ∈ 𝐺 do
4 Find the set of 2-D values 𝛿 (𝑐) from 𝑐;

5 𝑆 = 0;

6 for each 2-D value (𝑥,𝑦) ∈ 𝛿 (𝑐) do
7 𝑆 = 𝑆 +𝑀(𝑖, 𝑗) [𝑥,𝑦];
8 if 𝑆 ≠ 0 then
9 for each 2-D value (𝑥,𝑦) ∈ 𝛿 (𝑐) do

10 𝑀(𝑖, 𝑗) [𝑥,𝑦] ←
𝑀(𝑖,𝑗 ) [𝑥,𝑦 ]

𝑆
· 𝑓𝑐 ;

11 return𝑀(𝑖, 𝑗) ;

5.6 𝜆-D Query Estimation
To estimate the answer of a high dimensional query we lever-

age the idea of answering low dimensional 2-D queries and use

those values to estimate the answer of 𝜆-D query. This idea has

been successfully employed in different works [9, 32, 45, 48]. To

estimate the answer 𝑓𝑞 of a 𝜆 − 𝐷 of a query

𝑞 = (𝑎𝑡1
, 𝑜𝑡1

, 𝑣𝑡1
) ∧ (𝑎𝑡2

, 𝑜𝑡2
, 𝑣𝑡2
) ∧ ... ∧ (𝑎𝑡𝜆 , 𝑜𝑡𝜆 , 𝑣𝑡𝜆 )

where 𝑜𝑡𝑖 ∈ {=, in, between} specifies an operator, 𝑣𝑡𝑖 is either

a set of size 0 < |𝑣𝑡𝑖 | ≤ 𝑑𝑡1
of categorical values or a range

[𝑙𝑡𝑖 , 𝑟𝑡𝑖 ]. 𝐴𝑞 = {𝑎𝑡𝜓 |1 ≤ 𝜓 ≤ 𝜆}. The first step is splitting 𝑞 into(𝜆
2

)
associated 2-D queries{

𝑞 (𝑖, 𝑗) = (𝑎𝑖 , 𝑜𝑖 , 𝑣𝑖 ) ∧ (𝑎 𝑗 , 𝑜 𝑗 , 𝑣 𝑗 ) |𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴𝑞

}
and then get their answers

{
𝑓
𝑖, 𝑗
𝑞 |𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴𝑞

}
. Next, one should

use the

(𝜆
2

)
corresponding 2-D queries’ answers to estimate 𝑓𝑞 .

Algorithm 4 shows in detail how estimating the answer of a 𝜆-D

query 𝑞 works. The input of the algorithm is the answers of

(𝜆
2

)
associated 2-D queries. As output, it returns a estimated answer

vector 𝑧. In particular, the vector 𝑧 consists of 2
𝜆
elements that

are in one-to-one correspondence with the answers of 2
𝜆𝜆-D

queries in 𝑄 (𝑞) = ∧𝑡 (𝑎𝑡 , 𝑜𝑡 , 𝑣𝑡 ) ∨ (𝑎𝑡 , 𝑜𝑡 , 𝑣 ′𝑡 ) |𝑎𝑡 ∈ 𝐴𝑞 , where 𝑣
′
𝑡

is the complement of 𝑣𝑡 on the domain of 𝑎𝑡 . In Algorithm 4,

for each 𝑓
(𝑖, 𝑗)
𝑞 ∈

{
𝑓
(𝑖, 𝑗)
𝑞 |𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴𝑞

}
, the aggregator performs

the following update process on 𝑧. The aggregator first finds the

set of 𝜆 − 𝐷 queries 𝑄 (𝑞) (𝑖, 𝑗) corresponding to the 2-D query

𝑞 (𝑖, 𝑗) , which means that 𝑄 (𝑞) (𝑖, 𝑗) consists of all those 𝜆 − 𝐷

queries whose answers can contribute to 𝑓
(𝑖, 𝑗)
𝑞 . In particular,

𝑄 (𝑞) (𝑖, 𝑗) contains 2
𝜆−2 𝜆-D queries from𝑄 (𝑞) (𝑖, 𝑗) and is defined

as

{
∧𝑡 (𝑎𝑡 , 𝑜𝑡 , 𝑣𝑡 ) ∨ (𝑎𝑡 , 𝑜𝑡 , 𝑣 ′𝑡 ) |𝑎𝑡 ∈ 𝐴𝑞/{𝑎𝑖 , 𝑎 𝑗 }

}
. Then, the aggre-

gator calculates the sum 𝑌 of 𝑧 [𝑞′] for all 𝑞′ ∈ 𝑄 (𝑞) (𝑖, 𝑗) , where
𝑧 [𝑞′] is the element corresponding to the answer of 𝑞′. Next, the
aggregator uses 𝑓

(𝑖, 𝑗)
𝑞 to update the elements in 𝑧 as Lines 6-8.

This process is repeated until convergence. The estimated answer

𝑓𝑞 of the 𝜆-D query 𝑞 equals its corresponding element in 𝑧, i.e.,
𝑧 [𝑞]. Algorithm 4 is set to converge when the sum of the changes

of all elements in 𝑧 [𝑞] after each update process is smaller than

a certain threshold. It is shown in [45] that the threshold should

be smaller than
1

𝑛 .

Algorithm 4: Estimating Answer of 𝜆 − 𝐷 Query

Input :Associated 2-D queries’ answers{
𝑓𝑞 (𝑖,𝑗 ) |𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴𝑞

}
Output :Estimated answer vector z

1 Initialize all 2
𝜆
elements in the vector 𝑧 as 1

2
𝜆 ;

2 while not convergence do
3 for each 𝑓𝑞 (𝑖,𝑗 ) ∈

{
𝑓𝑞 (𝑖,𝑗 ) |𝑎𝑖 , 𝑎 𝑗 ∈ 𝐴𝑞

}
do

4 Find the set of queries 𝑄 (𝑞) (𝑖, 𝑗) corresponding to
𝑞 (𝑖, 𝑗) ;

5 Calculate 𝑌 =
∑
𝑞′∈𝑄 (𝑞) (𝑖,𝑗 ) 𝑧 [𝑞

′];
6 if 𝑌 ≠ 0 then
7 for each query 𝑞′ ∈ 𝑄 (𝑞) (𝑖, 𝑗) do
8 𝑧 [𝑞′] ← 𝑧 [𝑞′ ]

𝑌
· 𝑓𝑞 (𝑖,𝑗 ) ;

9 return 𝑧;

5.7 Privacy and Error Analysis
Privacy Assurance. The Adaptive strategy satisfies 𝜖-LDP be-

cause all the information collected from each user goes through

either OLH or GRR with privacy budget 𝜖 .
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The error analysis has to consider all sources of error. They

are the following: noise error, sampling error, non-uniformity

error, and estimation error.

Noise error. Due to the use of LDP frequency oracles, we have

the noise error since, to satisfy 𝜖-LDP, an error is added to each

cell. These noises are independently generated noise and have the

same standard deviation. When summing the noisy frequency

of cells to answer a query, the noise error is the sum of the

corresponding noises. To generate these independent noises, zero-

mean random variables are used; thus, the noises cancel each

other out to a certain degree. We know that, for independent

random variables X and Y, the variance of their sum is the sum

of their variances. Hence, the more partitioned the domain, the

more cells are included in a query, and the larger the noise error

is.

Sampling Error. In our strategy, we select a fraction 𝑛/𝑚 of the

total number of users to answer the frequency of each cell. As the

fraction of users may have a different distribution from the global

(i.e., the group of all users), this error must be considered. Let
¯𝑓𝑣

represent the true frequency, and 𝑓𝑣 is the estimated one. 𝐷𝑛 is a

fraction of dataset 𝐷 and𝑚 is the number of groups that the total

𝑛 users are divided. The expected squared error for estimating

one value is

E

[(
𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣

)
2

]
= E

[( (
𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣 (𝐷𝑛)

)
+
(

¯𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣
) )2

]
= E

[(
𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣 (𝐷𝑛)

)
2

]
+ E

[(
¯𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣

)
2

]
+ 2E

[(
𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣 (𝐷𝑛)

)
·
(

¯𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣

)]
(14)

The expected squared noise and sampling error is basically

the first part of Equation 14 since the third part of the equation

equals zero and the second part is a constant whose value is much

smaller when compared to the first part. In OLH, 𝑝 = 1/2 and

𝑝 ′ = 1/(𝑒𝜖 + 1). Thus, the noise and sampling error is expressed

as

E

[(
𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣 (𝐷𝑛)

)
2

]
=

4𝑚𝑒𝜖

𝑛(𝑒𝜖 − 1)2
+ 𝑚

𝑛
· ¯𝑓𝑣

and GRR with 𝑝 = 𝑒𝜖/𝑒𝜖 + 𝑑 − 1 and 𝑝 ′ = 1/(𝑒𝜖 + 𝑑 − 1), we
have

E

[(
𝑓𝑣 (𝐷𝑛) − ¯𝑓𝑣 (𝐷𝑛)

)
2

]
=
𝑚(𝑒𝜖 + 𝐿 − 2)
𝑛(𝑒𝜖 − 1)2

+ 𝑚
𝑛
· ¯𝑓𝑣

Non-Uniformity Error. This error occurs when we have nu-

merical attributes in the grid. In numerical dimensions, we may

have the query rectangle intersecting cells. Since we do not have

access to the actual data distribution inside the cell, we have to

compute the approximate non-uniformity error. More details are

in Section 5.2).

Estimation Error.When estimating the answer of a 𝜆-dimensional

query where 𝜆 > 2 from the associated answers of 2-D range

queries, estimation error will occur. Since the estimation error is

dataset dependent, there is an exact way of estimating it [45].

5.8 Discussion
FELIP and TDG/HDG [45] propose the use of grids to answer

multi-dimensional queries. However, there are several differences

between the two, and they are summarized as follows:

• Unlike TDG/HDG, the focus of FELIP is to answer queries

with point and range constraints.

• TDG/HDG is designed around OLH protocol. FELIP ana-

lyzes GRR and OLH. Moreover, it proposes a framework to

adaptively choose the protocol that offers the best utility

on a per-grid strategy.

• Unlike TDG/HDG, FELIP considers attributes with differ-

ent domain sizes. Moreover, in TDG/HDG grids’ dimen-

sions are not optimal since they have to be divisible by

domain size (detailed explanation in Section 3.2). We over-

come that limitation by enabling cells to have different

sizes within a grid.

• In TDG/HDG, all 1-D grids share the same size 𝑔1. Simi-

larly, 2-D grids all have the same size 𝑔2. FELIP calculates

the size of each grid individually while considering each

grid’s unique aspects.

• In TDG/HDG, the grids assume that the query selectiv-

ity is always 50%. In FELIP, the aggregator can utilize

the knowledge it has about queries selectivity during the

construction of grids.

6 EXPERIMENTAL EVALUATION
In this section, we aim to experiment our approach on different

settings and datasets while comparing its results to competitors.

6.1 Setup
We implemented our solution in Python 3.10. HIO and TDG/HDG

implementations are available online [1]. All the experiments are

conducted on a server with Ubuntu 20.04, Intel Core i7-7820X

3.60GHz, and 128GB memory.

Datasets. We experiment each scenario with four different

datasets, two synthetic and two real-world data from different

kinds of applications.

• Uniform: Synthetic dataset with all attribute values sam-

pled uniformly. The values in the attributes’ domain have

roughly the same frequency.

• Normal: Synthetic dataset with attribute values taken from

the normal distribution. The distribution is set to cover

all the domains of each attribute. The mean is the middle

value of the attribute’s domain. In this dataset, we experi-

ment with how the strategies behave with more skewed

data distribution.

• Ipums [35]: Dataset consists of US census microdata sam-

ples from 2014 to 2018. It has information about individ-

uals, such as age, income, and education. We sample 10

million user records with ten attributes (5 categorical and

5 numerical) with different distributions.

• Loan [23]: Dataset from the Lending Club, a peer-to-peer

lending company. The dataset includes information about

accepted loans and attributes such as credit scores, income,

and interest rates. In this dataset, we sample 2 million

(from a total of 2.2) user records with ten attributes (5

categorical and 5 numerical) with different distributions.

Error measures. We use the Mean Absolute Error (MAE) to

measure the accuracy of estimated answers. Given a set𝑄 queries,

it is computed as𝑀𝐴𝐸 = 1

|𝑄 |
∑
𝑞∈𝑄 |𝑓𝑞 − ¯𝑓𝑞 |, where 𝑓𝑞 and

¯𝑓𝑞 are

the estimated and true answers of query 𝑞, respectively.

6.2 Evaluation Scenarios
We vary the privacy budget 𝜖 , the query selectivity 𝑠 , the number

of attributes |𝐴|, the domain 𝑑 of attributes, the query dimension

𝜆, and the number of users 𝑛. To experiment with different num-

bers of users, we generate multiple test datasets from the two

synthetic datasets with the number of users ranging from 100k
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Figure 1: Results on different datasets varying the privacy budget 𝜖
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Figure 2: Results on different datasets varying the query selectivity 𝑠

to 1000k. For evaluation varying different numbers of attributes

and domain sizes, we generate multiple versions of these four

datasets with the number of attributes ranging from 3 to 10, their

domain sizes range from 2
4
to 2

10
.

To the best of our knowledge, the most recent work to sup-

port queries with range and point constraints in the local setting,

which is the focus of our work, is HIO [40]; thus we compare

extensively to HIO. We set the branching factor 𝑏 = 4. We set

𝛼1 = 0.7 and 𝛼2 = 0.03. To evaluate the performance of our

approach, we randomly generate a set Q of 𝜆-D queries and cal-

culate their MAE. We generate queries with different selectivity,

denoted by 𝑠 , which means the ratio of the specified interval to

the domain size for each queried numerical attribute. In all sub-

sequent experiments, unless explicitly stated, the privacy budget

has default value 𝜖 = 1.0, the query selectivity 𝑠 = 0.5, the num-

ber of attributes 𝑑 = 6, the domain of each numerical attribute

𝑑 = 100, the domain of each categorical attribute |𝐴| = 6, the

number of users 𝑛 = 10
6
, the query dimensions 𝜆 = 2, 4 and

|𝑄 | = 10.

6.2.1 Privacy budget. Figure 1 shows the results when vary-

ing the privacy budget 𝜖 . The strategy OUG performs better, as

expected, in the uniform dataset, achieving better results than

even OHG, especially for larger 𝜖 . In all other datasets, OHG is

superior. Due to its refined estimation, which uses auxiliary 1-D

grids, it obtains the best utility among all approaches. HIO had

the larger MAE in all datasets.

6.2.2 Query Selectivity. In this experiment, we vary how se-

lective the query is. We start with queries that select 10% of the

domain and increase that to 90%. Figure 2 shows the results. For

OHG and UOG, the broader the query, the greater the number

of cells included in the answer. That impacts the utility since, to

satisfy LDP, noise is added to each cell. The error increases on

all strategies as the query becomes less selective. OHG and UOG

perform better than HIO in all configurations. UOG has greater

utility on uniform datasets, especially when 𝜆 = 2. For all other

selectivity experiments, OHG is consistently the most accurate.

6.2.3 Domain size. Figure 3 shows the results when varying

the domain size of all attributes. The numerical attributes vary

from 25 to 1600, and the categorical vary from 2 to 8. The error

of OUG/OHG tends to stay, within a certain margin, the same as

the domain increases, unlike HIO which clearly increases con-

siderably. In general, we found that there is no significant trend
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Figure 3: Results on different datasets varying the at-
tributes’ domain 𝑑

(increasing or decreasing) for the error as the domain increases

in OUG/OHG. We can see that OHG performs the best on all

datasets except the uniform, in which OUG has some advantages.

2 3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

Query Dimensions

M
A
E

OUG

OHG

HIO

(a) Uniform

2 3 4 5 6 7 8 9 10

10
−3

10
−2

10
−1

Query Dimensions

M
A
E

OUG

OHG

HIO

(b) Normal

2 3 4 5 6 7 8 9 10

10
−2

10
−1

10
0

Query Dimensions

M
A
E

OUG

OHG

HIO

(c) Ipums

2 3 4 5 6 7 8 9 10

10
−3

10
−2

10
−1

10
0

Query Dimensions

M
A
E

OUG

OHG

HIO

(d) Loan

Figure 4: Results on different datasets varying the number
of query dimensions 𝜆

6.2.4 Query Dimension. Figure 4 shows the results when

varying the number of query dimensions. We considered queries

with 2-10 dimensions because it is the same setting that previ-

ous work [45] has used. We noticed that the more dimensions

a query has, the closer the true answer gets to zero (i.e., the
query becomes very restrictive). In general, while we increase

the number of query dimensions, the true answer value becomes

very small, and the estimated frequencies as well (also due to

post-processing). Thus, with both values approaching zero, the

error tends to become smaller. In the IPUMS Figure 4c, we found

that the error grows until a certain point where the true answer

is not so small. We notice that from 2 to 6 dimensions, there is

still a considerable amount of users that answer true to all predi-

cates. From 7 to 10, the true answer value becomes very small

with the queries becoming too restrictive from that point and the

estimated frequencies as well, thus with both values, true and

estimated, approaching zero the error tends to become smaller.

6.2.5 Number of attributes. Figure 5 shows the results when
varying the number of attributes in the dataset from 4 to 10. The

error on all strategies increases as the number of attributes be-

comes larger. To collect data under LDP, the total population is

divided into a greater number of groups; the higher the num-

ber of attributes, the fewer users per group. Thus, the utility is

reduced. HIO showed the more significant error in all configu-

rations. UOG, as in other experiments, has good performance

on uniform datasets. OHG has the lowest error on all the other

datasets.

6.2.6 Number of Users. Figure 6 shows the results when vary-

ing the population size 𝑛. In the Loan dataset, we vary 𝑛 from

10𝑘 to 1𝑚, and in all other datasets, 𝑛 varies from 100𝑘 to 10𝑚. As

expected, by increasing the number of users participating in the

data collection, we increase the number of users per group, which

leads to a better utility of all strategies under LDP. OUG has lower

MAEs in the uniform distributed dataset. HIO shows to have the

lowest utility compared to the optimized grid approaches. OHG

achieves the best results among all the strategies.

6.3 Adaptive Protocol Evaluation
In this experiment section, unlike Section 6.2, we consider queries

with range constraints only, even though FELIP is designed to

be a broader solution. We compare our solution to TDG/HDG

[45]. We also evaluate if the adaptive protocol can reduce error

in this scenario. So we compare our strategy with and without

the adaptive protocol to the baselines TDG and HDG. We call

OUG-OLH and OHG-OLH our optimized strategies that use the

OLH protocol only. OUG and OHG are the proposed strategies

with the adaptive protocol. TDG/HDG is designed around the

OLH protocol. In this evaluation, we set the parameter values the

same for all strategies. We set 𝛼1 = 0.7, 𝛼2 = 0.03, the number

of users to 1000000, the query selectivity to 0.5, domain size to

100 for all attributes, query dimension to 3, and both datasets

(normal, uniform) have six attributes.

Figure 7 (a) and (b) shows the results when using the uniform

grid strategies. In both datasets, we notice that even without

the adaptive protocol, OUG-OLH still performs better than TDG.

That is explained by the fact that we construct more accurate

sized grids than TDG. Also, we verify that the best uniform grid

strategy is OUG, which chooses the best protocol for each grid.

We can see that the non-uniformity error is an essential aspect

since all uniform grid strategies have a more significant error

on the normal dataset when compared to the uniform dataset.

Figure 7 (c) and (d) shows the results when comparing the hybrid

grid strategies. In this experiment, we note a more significant

difference between our proposed approach OHG and the baseline

HDG in both uniform and normal datasets. That is because, in

hybrid grids, we are constructing more accurate sized 2-D grids

and optimized 1-D grids which significantly impact the overall

utility. The OHG-OLH still has higher utility when compared to

HDG, but OHG that has the adaptive protocol achieves the best

result among all strategies.

7 CONCLUSION
In this work, we study the frequency estimation problem, under

LDP, over multidimensional data with categorical and numer-

ical attributes. We carefully analyze the different factors that
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Figure 5: Results on different datasets varying the number of attributes
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Figure 6: Results on different datasets varying the number of users Log(n)
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Figure 7: Results from queries with range constraints only when varying the privacy budget

impact the estimation error when using 1-D and 2-D grids. We

propose optimizing the grids’ construction, enabling users to

report their private data by mapping the domain of the attributes

using binning. Also, based on each grid characteristic, we propose

to adaptively select the frequency oracle protocol that will offer

the best accuracy. Our approach achieves high utility through

extensive evaluation across various datasets and query scenarios.

There are several potential extensions to our work. First is how

to enhance data decomposition to avoid cells with low true counts,

so the noise does not dominate the estimation. Another research

direction is studying how the aggregator can incorporate prior

public knowledge about the dataset to modify the data collection

process and improve utility. Finally, one can further investigate

how to leverage low-dimensional grids to answer queries over

data streams.
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