the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Trends in soil solution dissolved organic carbon (DOC) concentrations across European forests
Marta Camino-Serrano
Elisabeth Graf Pannatier
Sara Vicca
Sebastiaan Luyssaert
Mathieu Jonard
Philippe Ciais
Bertrand Guenet
Bert Gielen
Josep Peñuelas
Jordi Sardans
Peter Waldner
Sophia Etzold
Guia Cecchini
Nicholas Clarke
Zoran Galić
Laure Gandois
Karin Hansen
Jim Johnson
Uwe Klinck
Zora Lachmanová
Antti-Jussi Lindroos
Henning Meesenburg
Tiina M. Nieminen
Tanja G. M. Sanders
Kasia Sawicka
Walter Seidling
Anne Thimonier
Elena Vanguelova
Arne Verstraeten
Lars Vesterdal
Ivan A. Janssens
Abstract. Dissolved organic carbon (DOC) in surface waters is connected to DOC in soil solution through hydrological pathways. Therefore, it is expected that long-term dynamics of DOC in surface waters reflect DOC trends in soil solution. However, a multitude of site studies have failed so far to establish consistent trends in soil solution DOC, whereas increasing concentrations in European surface waters over the past decades appear to be the norm, possibly as a result of recovery from acidification. The objectives of this study were therefore to understand the long-term trends of soil solution DOC from a large number of European forests (ICP Forests Level II plots) and determine their main physico-chemical and biological controls. We applied trend analysis at two levels: (1) to the entire European dataset and (2) to the individual time series and related trends with plot characteristics, i.e., soil and vegetation properties, soil solution chemistry and atmospheric deposition loads. Analyses of the entire dataset showed an overall increasing trend in DOC concentrations in the organic layers, but, at individual plots and depths, there was no clear overall trend in soil solution DOC. The rate change in soil solution DOC ranged between −16.8 and +23 % yr−1 (median = +0.4 % yr−1) across Europe. The non-significant trends (40 %) outnumbered the increasing (35 %) and decreasing trends (25 %) across the 97 ICP Forests Level II sites. By means of multivariate statistics, we found increasing trends in DOC concentrations with increasing mean nitrate (NO3−) deposition and increasing trends in DOC concentrations with decreasing mean sulfate (SO42−) deposition, with the magnitude of these relationships depending on plot deposition history. While the attribution of increasing trends in DOC to the reduction of SO42− deposition could be confirmed in low to medium N deposition areas, in agreement with observations in surface waters, this was not the case in high N deposition areas. In conclusion, long-term trends of soil solution DOC reflected the interactions between controls acting at local (soil and vegetation properties) and regional (atmospheric deposition of SO42− and inorganic N) scales.
- Article
(7738 KB) - Full-text XML
-
Supplement
(884 KB) - BibTeX
- EndNote