loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Mauren C. de Andrade 1 ; Matheus Nogueira 2 ; Eduardo Fidelis 2 ; Luiz Campos 2 ; Pietro Campos 2 ; Torsten Schön 3 and Lester de Abreu Faria 2

Affiliations: 1 Universidade Tecnologica Federal do Parana, Ponta Grossa, Brazil ; 2 Centro Universitario Facens, Sorocaba, Brazil ; 3 AImotion Bavaria, Technische Hochschule Ingolstadt, Ingolstadt, Germany

Keyword(s): Radar Application, Generative Adversarial Network, Ground-Based Radar Dataset, Synthetic Automotive Radar Data.

Abstract: In this paper, we evaluate the training of GAN for synthetic RAD image generation for four objects reflected by Frequency Modulated Continuous Wave radar: car, motorcycle, pedestrian and truck. This evaluation adds a new possibility for data augmentation when radar data labeling available is not enough. The results show that, yes, the GAN generated RAD images well, even when a specific class of the object is necessary. We also compared the scores of three GAN architectures, GAN Vanilla, CGAN, and DCGAN, in RAD synthetic imaging generation. We show that the generator can produce RAD images well enough with the results analyzed.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 3.129.249.247

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
C. de Andrade, M.; Nogueira, M.; Fidelis, E.; Campos, L.; Campos, P.; Schön, T. and de Abreu Faria, L. (2023). Exploiting GAN Capacity to Generate Synthetic Automotive Radar Data. In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP; ISBN 978-989-758-634-7; ISSN 2184-4321, SciTePress, pages 262-271. DOI: 10.5220/0011672400003417

@conference{visapp23,
author={Mauren {C. de Andrade}. and Matheus Nogueira. and Eduardo Fidelis. and Luiz Campos. and Pietro Campos. and Torsten Schön. and Lester {de Abreu Faria}.},
title={Exploiting GAN Capacity to Generate Synthetic Automotive Radar Data},
booktitle={Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP},
year={2023},
pages={262-271},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011672400003417},
isbn={978-989-758-634-7},
issn={2184-4321},
}

TY - CONF

JO - Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP
TI - Exploiting GAN Capacity to Generate Synthetic Automotive Radar Data
SN - 978-989-758-634-7
IS - 2184-4321
AU - C. de Andrade, M.
AU - Nogueira, M.
AU - Fidelis, E.
AU - Campos, L.
AU - Campos, P.
AU - Schön, T.
AU - de Abreu Faria, L.
PY - 2023
SP - 262
EP - 271
DO - 10.5220/0011672400003417
PB - SciTePress