There is a newer version of the record available.

Published December 26, 2021 | Version v1.0-1
Dataset Open

Open Soil Spectral Library (training data and calibration models)

  • 1. OpenGeoHub
  • 2. Woodwell Climate Research

Description

Open Soil Spectral Library contains training MIR (68,257) and VisNIR (67,464) spectral scans + soil calibration data (51,732 unique locations) and calibration models. Key data set:

  • rm.ossl_v1.rds: a global regression-matrix used to fit all calibration models;

Important note: The data set spatially over-represents USA and European Union, with little training data in Asia, South America and Australia, hence calibration models reflect primarily soils of USA and Europe.

To use the models and data please install R and required packages. Read more about the RDS data format and how to convert it to CSV or similar. Modeling steps are explained in detail in: https://github.com/soilspectroscopy/ossl-models. To visualize database please use: https://explorer.soilspectroscopy.org/

Complete OSSL documentation can be found at: https://soilspectroscopy.github.io/ossl-manual/

Soil Spectroscopy for the Global Good is a Coordinated Innovation Network funded by USDA NIFA Food and Agriculture Cyberinformatics Tools Program (Award #2020-67021-32467).

Input datasets are property of the USDA NRCS National Soil Survey Center – Kellogg Soil Survey Laboratory, ICRAF-World Agroforestry, ISRIC-World Soil Information, the Africa Soil Information Service funded by the Bill and Melinda Gates Foundation, the European Soil Data Centre, the National Ecological Observatory Network, and ETH Zurich

For more advanced uses of the soil spectral libraries we advise to contact the original data producers especially to get help with using, extending and improving the original SSL data.

Files

001_mir.pnts_sites.png

Files (15.3 GB)

Name Size Download all
md5:d928fabc901369e481e8bb67e6dd43f4
246.9 kB Preview Download
md5:3863fd066254e806cb2ec6051747542e
258.4 kB Preview Download
md5:a3dd30ecf8c6163b81ecf055655b4803
250.3 MB Download
md5:45c130f3397cbeec769f7f085de671cd
14.3 GB Preview Download
md5:aa25de6ae871624937c9a24b0cfd7448
10.5 MB Download
md5:3b0aca27475b61420735ffb02a66275f
5.0 MB Download
md5:c920cbd455fa8e8464848041cd838558
201.9 MB Download
md5:126c173bca3c13aebe5f345a4b5d0582
484.6 MB Download

Additional details

References

  • Orgiazzi, Alberto, Cristiano Ballabio, Panagiotis Panagos, Arwyn Jones, and Oihane Fernández-Ugalde. 2018. "LUCAS Soil, the largest expandable soil dataset for Europe: a review." European Journal of Soil Science 69 (1): 140–53. https://doi.org/10.1111/ejss.12499.
  • Sanderman, Jonathan, Kathleen Savage, and Shree RS Dangal. 2020. "Mid-infrared spectroscopy for prediction of soil health indicators in the United States." Soil Science Society of America Journal 84 (1): 251–61. https://doi.org/10.1002/saj2.20009.
  • Summerauer, L., P. Baumann, L. Ramirez-Lopez, M. Barthel, M. Bauters, B. Bukombe, M. Reichenbach, et al. 2021. "The Central African Soil Spectral Library: A New Soil Infrared Repository and a Geographical Prediction Analysis." SOIL 7 (2): 693–715. https://doi.org/10.5194/soil-7-693-2021.
  • Vagen, Tor-Gunnar, Leigh Ann Winowiecki, Luseged Desta, Ebagnerin Jerome Tondoh, Elvis Weullow, Keith Shepherd, and Andrew Sila. 2020. Mid-Infrared Spectra (MIRS) from ICRAF Soil and Plant Spectroscopy Laboratory: Africa Soil Information Service (AfSIS) Phase I 2009-2013. World Agroforestry - Research Data Repository. https://doi.org/10.34725/DVN/QXCWP1.