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ABSTRACT

In many applications, entities and their relationships are
represented by graphs. Examples include the WWW (web
pages and hyperlinks) and bibliographic networks (authors
and co-authorship). A graph can be conveniently modeled
by a matrix from which various quantitative measures are
derived. Some example measures include PageRank and
SALSA (which measure nodes’ importance), and Personal-
ized PageRank and Random Walk with Restart (which mea-
sure proximities between nodes). To compute these mea-
sures, linear systems of the form Ax = b, where A is a ma-
trix that captures a graph’s structure, need to be solved. To
facilitate solving the linear system, the matrix A is often de-
composed into two triangular matrices (L and U). In a dy-
namic world, the graph that models it changes with time and
thus is the matrix A that represents the graph. We consider
a sequence of evolving graphs and its associated sequence of
evolving matrices. We study how LU-decomposition should
be done over the sequence so that (1) the decomposition
is efficient and (2) the resulting LU matrices best preserve
the sparsity of the matrices A’s (i.e., the number of extra
non-zero entries introduced in L and U are minimized.) We
propose a cluster-based algorithm CLUDE for solving the
problem. Through an experimental study, we show that
CLUDE is about an order of magnitude faster than the
traditional incremental update algorithm. The number of
extra non-zero entries introduced by CLUDE is also about
an order of magnitude fewer than that of the traditional
algorithm. CLUDE is thus an efficient algorithm for LU de-
composition that produces high-quality LU matrices over an
evolving matrix sequence.

1. INTRODUCTION
Graphs are a powerful tool which model real world enti-

ties and their relationships through nodes and edges. For
example, a graph can be used to model a social network
for which users are represented by nodes while their inter-
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actions (such as friendship or whether they have recently
communicated, etc.) are represented by edges. A graph can
also model web pages and the hyperlinks connecting them,
or model a bibliographic network capturing co-authorship
between authors.
A number of measures have been proposed for analyzing

graph structures. Examples include PageRank (PR) [22]
and SALSA [18] (which measure the importance of nodes),
and Personalized PageRank (PPR) [12], Discounted Hitting
Time (DHT) [14] and RandomWalk with Restart (RWR) [23]
(which measure the proximities between nodes). These mea-
sures have extensive applications, especially in the structural
analyses of the underlying information the graphs model.
For example, Google employs PR to rank search results [17],
and PPR is often used in node clustering and community de-
tection [2].
A common property of these measures is that computing

them requires solving certain linear systems. As an exam-
ple, consider RWR: we start from a node u in a graph and
at each step transit to another node. Specifically, with a
probability d (called the damping factor), we transit to a
neighboring node via an edge, and with a probability (1-d),
we transit to the starting node u. We can compute the sta-
tionary distribution of the nodes (i.e., how likely that we
are at a particular node at any time instant). Intuitively,
a large stationary probability of a node v implies that v is
close to node u under the RWR measure. Let xu be a vec-
tor representing the stationary distribution such that xu(v)
represents the stationary probability of node v, then xu can
be determined by solving:

xu = dWxu + (1− d)qu, (1)

where W is the column normalized adjacency matrix of the
graph1 and qu is a vector whose only non-zero entry is qu(u)
= 1. Let I be the identity matrix, Eq. 1 can be rewritten as

Axu = bu,

where A = I − dW and bu = (1− d)qu. In fact, each of the
measures we have mentioned can be similarly determined by
solving an equation of the form Ax = b for x by composing
a matrix A and a vector b. In this formulation, the matrix
A depends solely on the graph structure (and the measure to
be determined), while the vector b can be considered as an
input query for the measure. For example, by setting b = bu

1If (i, j) is an edge in the graph, then W (j, i) = 1/λ(i),
where λ(i) is the out-degree of node i; W (j, i) = 0 otherwise.
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for various nodes u, we obtain the stationary distributions
of different starting nodes u for the RWR measure.

In a dynamic world, the information modeled by the graph
changes with time. For example, a hyperlink is added to a
web page, or a Facebook link between two friends is estab-
lished. The graph thus evolves with time. In [25], it was
proposed that evolving graphs should be archived and ana-
lyzed as an Evolving Graph Sequence (or EGS). An EGS is
a sequence of snapshot graphs, each of which captures the
world’s state at a particular instant. As we have discussed,
a graph’s structure can be conceptually represented by a
matrix (A) from which various measures can be computed.
Hence, as the graph evolves, so are the matrices and the
measures. An interesting question is “How shall all these
matrices be processed so that graph-based measures can be
computed efficiently to support EGS analysis?”

Before we discuss how we tackle the problem, let us first
consider a few motivating examples to illustrate how graph-
based measures over an EGS could lead to interesting anal-
ysis.

Example 1 PageRank (PR) [22] is a widely used metric
to measure the importance of hyperlinked web pages. A
web publisher who makes money by putting Google Ads
on his web contents, for example, would be very interested
in the PageRank score of his web site. To illustrate how
PageRank scores change with time, we have collected 1000
daily snapshots of a set of 20,000 Wikipedia pages and their
hyperlinks. Figure 1 shows how the PR score of a Wiki
page labeled 152 changes over the 1000 snapshots. From
the figure, we see a number of interesting key moments at
which the PR score changes significantly. To illustrate, let
us discuss a few of them, which are marked by arrows in
Figure 1. These PR score changes are also illustrated in
Figure 2.

First we see a sharp rise of the score at snapshot #197. On
further investigation, we found that at that snapshot, new
links pointing to Page 152 were added to two other pages (see
Figures 2 (a) and (b)). Since these two pages (Pages 777 and
1169) had very large PR scores, they contributed much to
the rise of Page 152’s PR score at snapshot #197. Page 152’s
high PR score, however, was short-lived. A rapid decline of
the score was observed at snapshot #247. We found that
at that snapshot, a high-PR page (Page 8774), which only
pointed to Page 152, was edited with 30 more new outgoing
links added to it (see Figure 2 (c)). This drastically reduced
Page 8774’s contribution to Page 152’s PR score, resulting
in its sharp drop. Next, we see that the PR score of Page
152 steadily declined over a one-year period (from snapshot
#585 to #912). We found that over that period, no new
pages with large PR scores linked to Page 152 while at the
same time the out-degrees of the pages that were pointing
to Page 152 gradually increased. Hence, their contributions
to Page 152’s PR scores were gradually reduced. ✷

In this example, we see that interesting events occurred
which led to significant changes to the measure. To discover
such events, we need to identify the key moments in order to
focus the investigation over a manageable set of snapshots.
To achieve that, it is best to display the measure as a time
series from which key moments are extracted. This, in turns,
requires that the measure be evaluated over the whole EGS.

Example 2 In Google’s official guide on improving a web
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Figure 1: PR score of Wiki Page 152 over a 1000-day
EGS.
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Figure 2: Graph structure at specific snapshot.

page’s PR scores2, a number of actions are recommended.
Some of these actions include translating the web page to
other languages, publicizing the web site through newslet-
ters, providing a rich site summary (RSS), and submitting
the web site to various web directories, etc. How shall we
evaluate the effectiveness of these actions? What are the
usual lag times between the actions and their observable
effects? To answer those questions, we need to systemati-
cally analyze web pages’ PR scores as time series (such as
the one shown in Figure 1) and discover any association be-
tween various actions taken and any observable changes to
the measure. This again requires the PR score be computed
at every snapshot. ✷

Example 3 Link prediction has been a popular topic es-
pecially in the data mining literature. Most of existing works
on link prediction consider a static graph snapshot and eval-
uate certain “proximity” measure (e.g., RWR) with which
“closest node pairs” are identified as potential endpoints of
links. If one has access to not only, say, the RWR scores on a
single graph snapshot, but the time series of the scores over
an EGS, then the upward/downward trends of the scores
provide an important dimension based on which link predic-
tions could be made. The availability of the scores as time
series allows a wealth of prediction techniques to be applied
to predict links, such as those mentioned in [16] and [7]. ✷

An EGS is a sequence of graphs G = {G1, . . . , GT }. As we
have mentioned, each graph Gi derives a matrix Ai, which
is composed based on the structure of Gi and the kind of
measure to be evaluated. An EGS thus derives an evolving
matrix sequence (EMS) M = {A1, . . . ,AT }. To obtain a
series of measure values (such as Figure 1), we need to solve
the equation Aix = b for each matrix Ai. Our objective is
to study how these equations can be solved efficiently.
A standard method to solve a linear system is to perform

2http://www.googleguide.com/improving_pagerank.
html
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Gaussian Elimination (or GE), which is a rather expensive
operation for large graphs. Recall that the vector b is an
input of the measure (e.g., we set b = bu to compute the
RWR scores for the case where the starting node of the ran-
dom walk is u). Repeatedly applying GE for each input b

is very expensive. An alternative approach (LU decomposi-
tion) is to first decompose the matrix Ai as a product of a
lower triangular matrix Li and an upper triangular matrix
Ui (i.e., Ai = LiUi). Although LU decomposition is com-
putationally similar to GE (and so they have similar cost),
once the matrix Ai is decomposed, all linear systems of the
same matrix Ai can be solved very efficiently using forward
and backward substitution methods [9]. Hence using LU
decomposition allows us to avoid performing expensive GE
repeatedly for different input b’s. As an example, with our
Wikipedia dataset, once the matrix is LU-decomposed, solv-
ing the linear system is about 5,000 times faster than exe-
cuting one GE. Hence, we reduce the problem of solving the
linear system Aix = b to decomposing the matrix Ai.

To derive an efficient method to decompose all the ma-
trices in an EMS, we first need to understand the prop-
erties of the EMS. For most applications of interest, the
snapshot graphs (and hence the matrices of an EMS) are
(1) sparse and (2) gradually evolving. As an example, for
our Wikipedia dataset, the average out-degree of a node is
7. Also, successive snapshots share more than 99% of their
edges. The first property calls for LU decomposition meth-
ods that are specialized for sparse matrices, while the second
property suggests incremental LU decomposition be applied.
Let us briefly review the two techniques.

Given a sparse matrix A, decomposing it into L and U

usually does not perfectly preserve its sparsity. That is,
some 0 entries in A would become non-zero in L and U .
These entries are called fill-ins. A large number of fill-ins
is undesirable because (1) it takes more space to store the
matrices L and U , (2) it slows down forward and backward
substitutions in solving the linear systems, and most im-
portant of all, (3) it increases the decomposition time3. A
common approach to reduce the number of fill-ins is to apply
a reordering technique, which shuffles the rows and columns
of A before the matrix is decomposed. Although finding the
optimal ordering ofA to minimize the number of fill-ins is an
NP-Complete problem [26], there are a few heuristic reorder-
ing strategies, such as Markowitz [20] and AMD [1], which
have been shown to be very effective in reducing the number
of fill-ins in practice. The quality of an LU decomposition
refers to the number of fill-ins. Intuitively, the fewer fill-
ins, the higher the quality of the decomposition. Different
orderings of the matrix induce different decomposition qual-
ity. As we have mentioned, a higher-quality decomposition
generally gives faster decomposition time as well as faster
equation solving time (in the execution of forward/backward
substitutions).
There are previous studies on how to perform incremental

LU decomposition. Specifically, given a matrix A1 and a
low-rank matrix ∆A1, Bennett’s algorithm [5] computes the
LU factors ofA2 = A1+∆A1 from the LU factors ofA1 and
the updates ∆A1. The complexity of Bennett’s algorithm
is proportional to the rank of ∆A1 and the number of non-

3A number of factors affect the execution time of LU decom-
position on a sparse matrix. A major factor is the number of
non-zero entries in the resulting L, U matrices. The general
complexity, however, is unknown [9].

zero entries in the LU factors of A2. It has been shown
that Bennett’s algorithm is much more efficient than directly
computing the LU decomposition onA2 if the update matrix
∆A1 has a low rank.
Ideally, to achieve fast LU decomposition over an EMS,

we should perform reordering to reduce the number of fill-ins
and apply incremental LU decomposition such as Bennett’s
algorithm. Unfortunately, integrating the two techniques is
tricky. This is because to apply an incremental algorithm,
the same ordering (if any) has to be applied to both matri-
ces A1 and A2. However, an ordering that is best for A1

may not be so for A2. This issue is even more pronounced
when we attempt to apply Bennett’s algorithm onto a long
EMS. This is because a good ordering for A1 could be badly
unfit for the last matrix AT of the EMS, resulting in large
numbers of fill-ins and thus very slow LU decomposition.
Another issue of applying incremental LU decomposition

over an EMS is how the various factors Li and Ui are repre-
sented. Since these LU factors are typically sparse, they are
implemented using adjacency lists, which store the non-zero
entries of the factors. When we apply Bennett’s algorithm
to compute L2, U2 from L1, U1, the adjacency lists repre-
senting L1, U1 would have to be (structurally) modified to
form the adjacency lists for L2, U2. This structural update
of the data structures (such as node inserts and deletes in
the linked lists) turns out to be a dominating cost of the
incremental algorithm compared with the numerical com-
putation.
In this paper we propose an algorithm CLUDE for per-

forming LU decomposition on matrices of an EMS. CLUDE
groups the matrices in an EMS into clusters and apply an in-
cremental algorithm to decompose the matrices within each
cluster. The idea is that if matrices of the same clusters are
sufficiently similar with each other, then we may derive an
ordering that generally fits all the matrices in the cluster.
This cluster-based ordering allows the decomposition of the
matrices to be of high quality, which leads to faster LU de-
composition. Moreover, since the same ordering is applied
to all the matrices in the cluster, an incremental decompo-
sition algorithm can be applied. Finally, CLUDE applies
symbolic computation to build an adjacency-lists structure
that covers all the non-zero entries of all the LU factors of a
cluster. This avoids the expensive structural changes to ad-
jacency lists that happens when the incremental algorithm
is straightforwardly applied.
Here we summarize our contributions.

• We propose to study the problem of LU decomposition
over a sequence of evolving matrices, which finds many
applications especially those that involve the sequen-
tial analysis of graph structural measures.

• We study the interaction between matrix ordering and
incremental decomposition algorithm, with a focus on
optimizing decomposition quality and speed.

• We propose the algorithm CLUDE which employs a
clustering strategy to partition the matrices in an EMS
so that a universal ordering and a universal data struc-
ture can be applied to all the matrices in a cluster.

• We perform an extensive experimental study using both
real and synthetic datasets to evaluate CLUDE and
compare it against other decomposition methods. Our
experiment shows that CLUDE is up to an order of
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Table 1: Glossary of symbols
Symbols Meanings

n number of nodes in a snapshot graph
A, L, U an n× n matrix and its LU factors

Â decomposed version of A
x, b n× 1 vectors
sp(A) sparsity pattern of A, i.e., {(i, j)|A(i, j) 6= 0}
fp(A) fill-in pattern of A

s̃p(A)
symbolic sparsity pattern of A, i.e.,
sp(A) ∪ fp(A)

O, O∗(A) a matrix ordering; the Markowitz order of A
AO,LO,UO reordered matrix A and its LU factors

ÂO decomposed reordered version of matrix A

A∗ reordered matrix A with O∗(A), i.e.,

A∗ = AO
∗(A)

ql(O,A) quality-loss of applying O on A

A∩,A∪

intersection and union of the matrices in a
cluster in terms of their sparsity patterns

magnitude faster than the basic incremental algorithm
and at the same time achieves up to an order of mag-
nitude smaller number of fill-ins.

The rest of this paper is organized as follows. In Sec-
tion 2 we cover the basics of traditional LU decomposition.
We present a formal problem definition in Section 3 and de-
scribe the various algorithms in Section 4. In Section 5 we
extend our solution to one that can guarantee decomposition
quality. In Section 6 we present the experimental results. In
Section 7 we present a case study showing how interesting
observations can be obtained by analyzing certain measures
on real data. In Section 8 we discuss some related works.
Finally, we conclude the paper in Section 9.

2. PRELIMINARY
In this section we give some details of LU decomposition

and matrix reordering. We will also define the various sym-
bols and notations used in the paper. Figure 3 illustrates
the various concepts and Table 1 lists the frequently used
symbols.

2.1 LU decomposition
A system of linear equations Ax = b, where A is an n×n

non-singular matrix, has a unique solution x = A−1b. A
straightforward method to solve for x is to first invert the
matrix A. After that, x can be computed by multiplying
A−1 to any input query b. The problem of this approach is
that when A is sparse, A−1 is usually dense [24] (e.g., see
Figures 3(b) and (i) for a sparse matrix A and its dense in-
verse). It thus takes O(n2) space to store A−1, which is im-
practical for large graphs (and matrices). Besides, comput-
ing A−1b takes O(n2) time (because A−1 is dense), which
is too expensive, considering that it has to be done for ev-
ery input query b. The matrix inversion method is thus
impractical.
To facilitate solving x for various input query b, we de-

compose a matrix A into its LU factors. The decomposition
can be done by the Crout’s method [9]. Figure 3(c) shows an
example decomposition. Now, {Ax = b} ⇔ {L(Ux) = b}.
To find x, we first perform forward substitution to get Ux,
followed by a backward substitution process to obtain x [9].

2.2 Preserving sparsity in LU decomposition

Let Â = L+U be the decomposed representation of matrix

A. If the number of non-zero entries in Â is k, then the
complexity of forward/backward substitutions isO(k). Also,
the time complexity of Crout’s method is a function of k. As
we have explained in the introduction, a good decomposition
should preserve the sparsity of the matrix A as much as
possible. That is, k should be kept small, which is typically
achieved by applying some reordering technique. Here, we
briefly discuss reordering. First, some definitions.

Definition 1 (Sparsity pattern). Given a matrix A,
its sparsity pattern, denoted by sp(A), is the set of indices of
A at which A contains non-zero values. That is, sp(A) :=
{(i, j) | A(i, j) 6= 0}.

Figure 3(a) shows an illustration of a sparsity pattern.
Note that decomposing a matrix A into its LU factors may
introduce extra non-zero entries. This is illustrated by Fig-
ures 3(a) and 3(d), which show the sparsity pattern of the

original matrix A and that of its decomposed form Â, re-
spectively. These extra non-zero entries introduced by LU
decomposition are called fill-ins. (In Figure 3(d), fill-ins are
shown as dark grey entries.)
To reduce the number of fill-ins, we reorder the matrix A

based on an ordering O.

Definition 2 (Ordering). An ordering O = (P ,Q)
is a pair of n-by-n permutation matrices P , Q. Each row
or column of a permutation matrix contains exactly one non-
zero entry, whose value is 1. (Figure 3(j) shows an example.)
We say that a matrix A is reordered by the ordering O into
a matrix AO if AO = PAQ.

Figure 3(f) shows a reordered matrix. Instead of decom-
posing the original matrix A, we decompose the reordered
matrix AO instead into two factors, denoted by LO and UO

(see Figure 3(g)). The purpose of reordering the matrix is

to reduce the number of fill-ins. Let ÂO = LO +UO be the
decomposed (“̂”) reordered (“O”) version of A. Figure 3(h)

shows its sparsity pattern, sp(ÂO). Compared against the
sparsity pattern of sp(AO) (Figure 3(e)), there is only one
fill-in brought about by the decomposition. The reordering
step has thus resulted in much fewer fill-ins compared with
the original decomposition (Figure 3(d)). One of the best
reordering strategies is given by Markowitz, which has been
shown to be very effective [20].
Given the LU factors, LO and UO, of AO, solving the

original equation Ax = b for x is simple. Note that,

{Ax = b} ⇔ {P−1AOQ−1x = b} ⇔ {AO(Q−1x) = Pb}.

Let x′ = Q−1x and b′ = Pb, we have, AOx′ = b′.
Given LO and UO, x′ can be solved efficiently using for-
ward/backward substitutions. Finally, x is computed by
x = Qx′. Note that the permutation matrices P and Q

contain only one non-zero entry in each row or column.
Therefore, computing b′ = Pb and x = Qx′ takes only
O(n) time.

2.3 Implementing LU decomposition on sparse
matrices

For most applications of interest, the matrix A and its LU
factors L, U are sparse. They are thus typically represented
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Figure 3: Illustration of LU decomposition, sparsity pattern, fill-ins, reordering, and matrix inverse.
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Figure 4: Data structures for storing a matrix and
its LU factors

using adjacency lists. Figure 4 shows the data structures for
representing the matrix and its factors. The decomposition
process consists of two phases [9], namely, (1) symbolic de-
composition (SD-phase) and (2) numerical decomposition
(ND-phase). The purpose of the SD-phase is to determine
the locations of all possible fill-ins so that the data struc-
tures for representing the LU factors (see Figures 4 (b) and
4(c)) can be efficiently created. In the ND-phase, the actual
values of the entries are computed.

More specifically, in the SD-phase, we determine a fill-in
pattern, fp(A) [26], given by

fp(A) = {(u, v) 6∈ sp(A) | ∃u1, . . . , uk, s.t.

(1) k ≥ 1,

(2) ui < min{u, v} ∀1 ≤ i ≤ k,

(3) (u, u1), (ui, ui+1), (uk, v) ∈ sp(A) ∀1 ≤ i < k}.

(2)

In words, w.r.t. the graph from which the matrix A is
derived, the node pair (u, v) is in fp(A) if there is a path of
length-2 or longer from u to v such that none of the nodes
visited along this path has an index larger than those of u

and v. We define the symbolic sparsity pattern, s̃p(A) of
a matrix A as the union of A’s sparsity pattern and fill-in
pattern, i.e.,

s̃p(A) = sp(A) ∪ fp(A). (3)

It can be shown that fp(A), as defined in Eq. 2, covers all fill-

ins’ locations and so s̃p(A) covers all the locations in sp(Â)

(Figure 3(d)), i.e., sp(Â) ⊆ s̃p(A). Hence, by determining
s̃p(A) in the SD-phase, we get to cover all non-zero locations
of the LU factors. So, the data structures for storing the LU
factors can be prepared before the numerical decomposition.
Note that our discussion of the fill-in pattern and the sym-

bolic sparsity pattern is orthogonal to whether reordering is
done. In other words, if an ordering O is first applied to the
matrix A before it is decomposed, then the fill-in pattern
and the symbolic sparsity pattern are defined on the matrix
AO, giving fp(AO) and s̃p(AO).

3. PROBLEM DEFINITION
As we have discussed in the introduction, reordering and

incremental decomposition are two techniques we can apply
in decomposing the matrices in an EMS. Different orderings
Oi, when applied to a matrix Ai, result in different symbolic
sparsity patterns s̃p(AOi

i
). Note that the larger s̃p(AOi

i
) is,

the larger is the data structure for storing the LU factors
(see Section 2.3), and the longer does it take to perform
the decomposition and to solve the linear system Aix = b.
Therefore, it is important that a good ordering Oi for each
matrix Ai be found, such that the size of s̃p(AOi

i
) is small.

One of the best reordering strategies is given by Markowitz.
For any matrix A, let O∗(A) be the Markowitz order of A,

and let A∗ be A reordered with O∗(A) (i.e., A∗ = AO
∗(A)).

Ideally, each Ai in an EMS should be reordered into “its
best form”A∗

i before it is decomposed. There are, however,
two problems with this approach. First, determining the
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Markowitz order of a matrix is generally as expensive as do-
ing a Gaussian Elimination [9]. So, finding the Markowitz
order for every matrix in an EMS is very expensive. Sec-
ond, to apply an incremental LU decomposition algorithm
on two successive matrices Ai and Ai+1, if we apply an or-
dering on Ai, the same ordering has to be applied to Ai+1

as well. However, O∗(Ai) and O∗(Ai+1) could be different.
As a result, an algorithm for decomposing the matrices in an
EMS has to be selective in determining what orderings are
applied to the matrices, and which matrices in the sequence
should share the same ordering so that efficient incremental
decomposition can be performed on them. With this dis-
cussion, we are ready to formally define the problem of LU
Decomposition over an Evolving Matrix sequence (LUDEM).

Definition 3 (The LUDEM Problem). Given an EMS
M = {A1,A2, . . . ,AT }, where each Ai is an n × n sparse
matrix, determine, for 1 ≤ i ≤ T , an ordering Oi for Ai

and compute the LU factors of AOi

i .

We can evaluate an algorithm for solving the LUDEM
problem by two metrics: (1) how fast it executes and (2)
how good the orderings Oi’s are. Since Markowitz is a
known method for generating very good orderings. We use
the Markowitz order O∗(Ai) as a quality reference, and de-
fine the quality-loss of an ordering as follows.

Definition 4 (Quality-loss of an ordering). Given
an ordering O of a matrix A, the quality-loss of O on A,
denoted by ql(O,A), is given by,

ql(O,A) =
|s̃p(AO)| − |s̃p(A∗)|

|s̃p(A∗)|
. (4)

That is, we compare the size of the symbolic sparsity pattern
of AO against that of the Markowitz ordered A∗. Note that
a smaller ql(O,A) implies a higher ordering quality.

In general, s̃p(A∗) cannot be determined without deter-
mining the Markowitz ordering and decomposing A∗. How-
ever, for the special case in which A is a symmetric matrix,
it has been shown that its Markowitz ordering and s̃p(A∗)
can be determined very efficiently without physically de-
composing the matrix [1, 13]. In this case, an algorithm
for solving the LUDEM problem can very efficiently evalu-
ate (using Equation 4) the quality-loss of the orderings it
produces. In particular, the algorithm can perform quality
control on its own output. So, for the special case of sym-
metric matrices, we extend the LUDEM problem to one that
has an additional quality constraint. We call this problem
LUDEM-QC.

Definition 5 (The LUDEM-QC Problem). Given an
EMS M = {A1,A2, . . . ,AT }, where each Ai is an n × n
sparse symmetric matrix, and a quality requirement β ≥ 0,
determine, for 1 ≤ i ≤ T , an ordering Oi for Ai such that
ql(Oi,Ai) ≤ β, and compute the LU factors of AOi

i .

4. ALGORITHMS FOR LUDEM
In this section we describe algorithms for solving the LU-

DEM problem.
[Brute Force (BF)] The brute force method (BF) de-

termines the Markowitz ordering O∗(Ai) of each matrix Ai,
reorders Ai to the Markowitz ordered A∗

i and then decom-
poses A∗

i . Under BF, Oi = O∗(Ai). BF is generally slow

because it takes much time to determine the orderings of all
matrices and it does not employ a fast incremental decom-
position algorithm. However, BF achieves the best order-
ing quality because all matrices are Markowitz ordered. We
will use BF as the baseline with which the performances of
other algorithms are measured. In particular, we evaluate
the ordering quality of other algorithms against Markowitz
orderings (see Definition 4). Also, the execution times of
other algorithms are expressed as speedup factors over BF.
[Straightly Incremental (INC)] The INC algorithm

first determines the Markowitz ordering of A1 and applies

the ordering to every matrix in the EMS to obtain A
O

∗(A1)
i

for all 1 ≤ i ≤ T . INC then decomposesA
O

∗(A1)
1 followed by

applying Bennett’s algorithm to incrementally decompose

the successive matrices A
O

∗(A1)
2 , . . . ,A

O
∗(A1)

T . Hence, un-
der INC, Oi = O∗(A1). INC computes only one Markowitz
ordering and performs only one full decomposition, in addi-
tion to executing Bennett’s algorithm T − 1 times.
A problem with INC is that the ordering quality dete-

riorates as we move from A1 to AT because the matrices
deviate from A1 progressively. As we have explained, a bad
ordering makes decomposition (full or incremental) slower
because of a much larger number of fill-ins in the LU factors.
However, to apply Bennett’s algorithm, the matrices have to
share the same ordering. Our next two algorithms attempt
to strike a balance between ordering quality and the applica-
bility of incremental decomposition. The idea is to partition
the EMS into clusters such that matrices within the same
cluster are sufficiently similar. With highly-similar cluster
members, a single ordering can be shared by all members of
a cluster and yet the ordering is of good enough quality. We
call our next two algorithms cluster-based algorithms. Before
their descriptions, we first give the details of the clustering
procedure.
In order to group matrices in an EMS into clusters, we

need to define a similarity measure. We measure two matri-
ces’ similarity by comparing the structures of their underly-
ing graphs, which are conveniently captured by the sparsity
patterns of the matrices (see Figure 3(a)). Specifically, we
use a normalized matrix edit similarity (mes) measure that
is based on the symmetric difference of the matrices’ sparsity
patterns:

Definition 6 (Matrix edit similarity). Given two
matrices Aa and Ab,

mes(Aa,Ab) :=
2|sp(Aa) ∩ sp(Ab)|

|sp(Aa)|+ |sp(Ab)|
. (5)

Let C = {A1, ...,At} be a cluster of t matrices4. We derive
two bounding matrices A∩ and A∪, which are the intersec-
tion and union of the matrices in C in terms of their sparsity
patterns. Formally,

Definition 7 (A∩, A∪). For all 1 ≤ i, j ≤ n,

A∩(i, j) :=

{
1 if (i, j) ∈

⋂t

k=1 sp(Ak),
0 otherwise;

A∪(i, j) :=

{
1 if (i, j) ∈

⋃t

k=1 sp(Ak),
0 otherwise.

It can be easily seen that,

4W.l.o.g., we assume that the cluster starts with the matrix
index 1.
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Property 1. sp(A∩) ⊆ sp(Ai) ⊆ sp(A∪) ∀1 ≤ i ≤ t.

Hence, A∩ and A∪ sandwich the matrices in C. We can
thus measure the compactness of the cluster by the similarity
between A∩ and A∪.

Definition 8 (α-boundedness). A cluster C of ma-
trices is said to be α-bounded if and only if mes(A∩,A∪) ≥
α.

Since typically the matrices in an EMS are progressively
evolving, we use a simple segmentation strategy to partition
the matrices of an EMS into clusters. Specifically, given a
user-specified similarity threshold α, we start with an empty
cluster C1 and incrementally insert the matrices into C1 start-
ing withA1, thenA2, etc., as long as C1 remains α-bounded.
If the bounding requirement would have been violated by
adding one more matrix, we start building the next cluster
C2 and repeat the process. We call this α-clustering. Algo-
rithm 1 shows the clustering algorithm.

Algorithm 1: α-clustering.

Input : EMSM = {A1,A2, . . . ,AT }, Similarity
threshold α

Output: Clusters {C1, C2, . . . , Cj}

1 j ← 1; Cj ← {A1}
2 for i← 2 to T do

3 Construct A∩,A∪ from Cj ∪{Ai} based on Definition 7
4 if mes(A∩,A∪) ≥ α then

5 Cj ← Cj ∪ {Ai}
6 else // start building the next cluster
7 j ← j + 1; Cj ← {Ai}
8 end

9 end

10 return {C1, C2, . . . , Cj}

Note that a larger α implies that A∩ and A∪ of a clus-
ter are more similar, which then implies a tighter bounding
requirement. This results in fewer matrices in a cluster and
more clusters segmented from an EMS.

[Cluster-based Incremental (CINC)] Our next al-
gorithm CINC applies INC on each cluster independently.
More specifically, for each cluster C, CINC determines the
Markowitz ordering of the first matrix in C and applies that
ordering to all the matrices in C. After that, it decomposes
the first matrix of C followed by applying Bennett’s algo-
rithm to incrementally decompose the other matrices in the
cluster. Algorithm 2 shows the pseudo code of CINC.

Algorithm 2: CINC on one cluster.

Input : A cluster C = {A1,A2, . . . ,At}
Output: Ordering and LU factors of Ai, for 1 ≤ i ≤ t

1 O1 ← O∗(A1)

2 (LO1

1 ,U
O1

1 )← LU decomposition on A
O1

1
3 for i← 2 to t do
4 Oi ← O1

5 ∆A← A
O1

i −A
O1

i−1

6 (L
Oi

i ,U
Oi

i )← Bennett(AO1

i−1,∆A,L
O1

i−1,U
O1

i−1)

7 end

8 return {O1, . . . ,Ot}, and {(L
O1

1 ,U
O1

1 ), . . . , (LOt

t ,U
Ot

t )}

[Fast Cluster-based LU Decomposition (CLUDE)]
Given two consecutive matrices Ai and Ai+1 in a cluster C,

their symbolic sparsity patterns are typically different. The
adjacency-lists structures for storing their LU factors are
therefore different (see Section 2.3). As we apply Bennett’s
algorithm to obtain the LU factors of matrix Ai+1 from
those of Ai, the list structures of Ai+1 are dynamically cre-
ated based on those of Ai. We have profiled the execution
of Bennett’s algorithm. Interestingly, about 70% of its ex-
ecution time is spent on constructing the list structures of
Ai+1, which involves frequent scanning and restructuring of
various adjacency lists. Our next algorithm, CLUDE, takes
advantage of the matrix cluster to determine a universal
symbolic sparsity pattern (USSP). As we will show later, a
USSP of a cluster C covers all the symbolic sparsity patterns
of the matrices in C. We can thus build a universal adjacent-
lists structure to be commonly used to store the LU factors
of all matrices in C. Since this universal structure is static,
we avoid the expensive dynamic construction of individual
matrix’s list structure, leading to much savings in execution
time.
Before we describe the details of CLUDE, let us first ex-

plain the idea of USSP and prove some of its properties.

Definition 9. (Universal symbolic sparsity pat-
tern). Consider a cluster C. A set of matrix indices, S, is
a USSP of C iff s̃p(A) ⊆ S, ∀A ∈ C.

Recall that for any matrix A, the data structures for stor-
ing A’s LU factors are determined by its symbolic sparsity
pattern (s̃p(A)) (see Figure 4). In particular, a node is cre-
ated in an adjacency list for each matrix index that is present
in s̃p(A). We can likewise derive the data structures from
a USSP S of a cluster. Since s̃p(A) ⊆ S, ∀A ∈ C, the data
structures for A are substructures of those derived from S.
Hence the structures for S can act as static structures with
which the the LU factors of the matrices in A are com-
puted. In the following, we show how to obtain a USSP for
a cluster based on A∪ (see Definition 7). First, we prove a
monotonicity property given by the following lemma.

Lemma 1. Given two matrices Aa and Ab,

(sp(Aa) ⊆ sp(Ab)) ⇒ (s̃p(Aa) ⊆ s̃p(Ab)).

Proof. Assume sp(Aa) ⊆ sp(Ab) and (u, v) ∈ s̃p(Aa),
it suffice to show that (u, v) is also in s̃p(Ab). First, from
Equation 3, sp(Ab) ⊆ s̃p(Ab). Hence, if (u, v) ∈ sp(Ab),
then (u, v) ∈ s̃p(Ab). The only case left to be considered is
(u, v) /∈ sp(Ab). Since sp(Aa) ⊆ sp(Ab), we have (u, v) /∈
sp(Aa). Now, ((u, v) ∈ s̃p(Aa)) ∧ ((u, v) /∈ sp(Aa)) ⇒
(u, v) ∈ fp(Aa) (Equation 3), i.e., ∃u1, . . . , uk, s.t. the three
conditions listed in Equation 2 are satisfied. In particular,

(3) (u, u1), (ui, ui+1), (uk, v) ∈ sp(Aa) ∀1 ≤ i < k.

Since sp(Aa) ⊆ sp(Ab), we have (u, u1), (ui, ui+1), (uk, v) ∈
sp(Ab) ∀1 ≤ i < k. And thus, (u, v) ∈ fp(Ab). Hence,
(u, v) ∈ s̃p(Ab) (Equation 3).

Theorem 1. Given a cluster C = {A1, . . . ,At}. Let A∪

be the matrix as defined in Defintion 7. s̃p(A∪) is a USSP
of C.

Proof. ∀Ai ∈ C, we have sp(Ai) ⊆ sp(A∪) (by Prop-
erty 1), which implies s̃p(Ai) ⊆ s̃p(A∪) (by Lemma 1).
Hence, by Definition 9, s̃p(A∪) is a USSP of C.

s̃p(A∪) can be obtained by performing symbolic decom-
position on A∪ (see Section 2.3). After that, a static data
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structure is derived from s̃p(A∪) on which Bennett’s algo-
rithm operates. To reduce the size of the structure and thus
decomposition time, we precede the above steps by finding
the Markowitz ordering of A∪ and applying the ordering to
A∪ as well as all matrices in the cluster. Algorithm 3 shows
the pseudo code of CLUDE.

Algorithm 3: CLUDE on one cluster.

Input : A cluster C = {A1,A2, . . . ,At}
Output: Ordering and LU factors of Ai, for 1 ≤ i ≤ t

1 Construct A∪ from
⋃t

i=1 sp(Ai) based on Definition 7
2 O∪ ← O∗(A∪)

3 Apply symbolic decomposition on A
O∪

∪ to obtain s̃p(AO∪

∪ )

4 Create static structure from s̃p(AO∪

∪ ) for LU factors
5 O1 ← O∪

6 (LO1

1 ,U
O1

1 )← LU decomposition on A
O1

1
7 for i← 2 to t do
8 Oi ← O∪

9 ∆A← A
O∪

i −A
O∪

i−1

10 (L
Oi

i ,U
Oi

i )← Bennett(AO∪

i−1,∆A,L
O∪

i−1,U
O∪

i−1)

11 end

12 return {O1, . . . ,Ot}, and {(L
O1

1 ,U
O1

1 ), . . . , (LOt

t ,U
Ot

t )}

5. ALGORITHMS FOR LUDEM-QC
We extend our cluster-based algorithms CINC and CLUDE

to solve the LUDEM-QC problem for which an additional
quality constraint ql(Oi,Ai) ≤ β has to be enforced. The
key to enforcing the quality constraint is to control the size
of the cluster. The smaller the cluster is, the higher the
chance that the orderings produced by CINC or CLUDE
satisfy the quality constraint. In the extreme case, when
each cluster contains just one matrix, the ordering given by
CINC or CLUDE for the (lone) matrix in the cluster is just
Markowitz. Hence, ql(Oi,Ai) = 0 and so the constraint is
vacuously satisfied. In the following, we discuss how the
clustering algorithm should be modified under CINC and
CLUDE so that the quality constraint is enforced. We call
this clustering β-clustering. In the following discussion, we
describe how to construct the first cluster of the EMS. Sub-
sequent clusters are done similarly.

[β-clustering CINC version] Given a cluster C = {A1,
. . . ,At}, CINC uses the Markowitz ordering of the first ma-
trix in the cluster O1 as the ordering of all the matrices in
the cluster. As we attempt to expand the current cluster
by adding a matrix At+1 from the EMS, we evaluate the
quality-loss ql(O1,At+1). If the quality constraint is vio-
lated, we start constructing a new cluster. Essentially, we
replace the α-boundedness condition in α-clustering by the
β quality-constraint. Algorithm 4 shows the clustering al-
gorithm.

[β-clustering CLUDE version] CLUDE uses the Marko-
witz ordering O∪ of A∪ as the ordering of the matrices
in the cluster. Checking the quality constraint as we at-
tempt to add At+1 to the cluster is trickier than in the
CINC’s case. This is because adding At+1 to C changes
A∪ and thus O∪. Hence, the quality constraints on all the
t matrices that are already in the cluster have to be re-
evaluated. To speed up constraint checking, we take a short-
cut. Note that the constraint on Ai ∈ C is equivalent to φi :
{|s̃p(AO∪

i )|− |s̃p(A∗

i )| ≤ β · |s̃p(A∗

i )|}. Also from Property 1

Algorithm 4: β-clustering (CINC version).

Input : EMSM = {A1,A2, . . . ,AT }, quality
requirement β

Output: Clusters {C1, C2, . . . , Cj}

1 j ← 1; Cj ← {A1}
2 O ← O∗(A1)
3 for i← 2 to T do

4 if |s̃p(AO
i )| − |s̃p(A∗

i )| ≤ β · |s̃p(A∗
i )| then

5 Cj ← Cj ∪ {Ai}
6 else // start building the next cluster
7 j ← j + 1; Cj ← {Ai}
8 O ← O∗(Ai)

9 end

10 end

11 return {C1, C2, . . . , Cj}

and Lemma 1, we have |s̃p(AO∪

i )| ≤ |s̃p(AO∪

∪ )|. Therefore

the constraint φ∪ : {|s̃p(AO∪

∪ )|−|s̃p(A∗

i )| ≤ β · |s̃p(A∗

i )|} im-
plies φi. Hence, as we attempt to add At+1 to the current
cluster, we only need to compute one |s̃p(AO∪

∪ )| instead of t
|s̃p(AO∪

i )|’s. Algorithm 5 shows this clustering algorithm.

Algorithm 5: β-clustering (CLUDE version).

Input : EMSM = {A1,A2, . . . ,AT }, quality
requirement β

Output: Clusters {C1, C2, . . . , Cj}

1 j ← 1; Cj ← {A1}
2 for i← 2 to T do

3 Construct A∪ from Cj ∪ {Ai} based on Definition 7
4 O∪ ← O∗(A∪)

5 if ∀Al ∈ Cj ∪Ai, |s̃p(A
O∪

∪ )| − |s̃p(A∗

l
)| ≤ β · |s̃p(A∗

l
)|

then

6 Cj ← Cj ∪ {Ai}
7 else // start building the next cluster
8 j ← j + 1; Cj ← {Ai}
9 end

10 end

11 return {C1, C2, . . . , Cj}

6. EXPERIMENTAL EVALUATION
We conduct experiments to evaluate the algorithms INC,

CINC, and CLUDE. We execute BF to obtain baseline per-
formance numbers against which the other algorithms are
evaluated. In particular, we execute BF to determine the
Markowitz ordering of each matrix in the EMS to measure
the quality-loss of the orderings given by other algorithms.
Also, the execution times of the other algorithms are ex-
pressed as speedup factors over BF’s execution time. All al-
gorithms are implemented in Java and the experiments are
conducted on a Linux machine with a 3.40GHz Octo-Core
Intel(R) processor and 16GB of memory.
We conduct experiments on two EMS’s that are derived

from two real datasets5 and also on a synthetic EMS. Here
we briefly describe the datasets.
[Wiki] We collected a set of 1000 daily snapshots of 20,000
Wikipedia pages and their hyperlinks. The number of hy-
perlinks in the first and the last snapshots are 56,181 and
138,072, respectively. The average (mes) similarity (Eq. 5)

5http://socialnetworks.mpi-sws.org/,
http://dblp.uni-trier.de/xml/.
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between successive matrices derived from the snapshots is
99.88%.
[DBLP] The DBLP dataset consists of 70 years of publica-
tions. We extracted all publications in three areas (1) DB,
(2) Vision, (3) Algorithms & Theory. Based on these publi-
cations, we constructed a sequence of co-authorship graphs.
The snapshot graph of a date is derived from all the papers
published before that date6. We used the latest 1000 daily
snapshots for our experiments. There are 97,931 vertices;
the number of edges in the first and the last snapshots are
387,960 and 547,164, respectively. The average similarity
between successive matrices derived from the snapshots is
99.86%.
[Synthetic]We generated synthetic EGS’s from which EMS’s
are derived. Our EGS generator takes five parameters (their
default values are shown in parentheses):
• V (50,000): the number of vertices.
• |EP | (450,000): the number of edges in an“edge pool”EP .
• d (5): the average vertex degree of the first snapshot.
• k (4): the ratio ∆E+/∆E−, where ∆E+ and ∆E− are
the number of edges added to and removed from a snapshot
to generate the next snapshot, respectively.
• ∆E (500): ∆E+ +∆E−.
• T (500): the number of snapshots in the EGS.

To generate an EGS, we first use the BA model [4] to
generate a scale-free7 base graph G that has V vertices and
|EP | edges. All the edges are collected in the edge pool EP .
Next, we randomly pick d·V edges from EP to form the edge
set E of the first snapshot. Then we repeat the following
procedure to generate subsequent snapshot graphs:

1. Randomly remove ∆E− = ∆E/(k + 1) edges from E.

2. Randomly pick ∆E+ = (k · ∆E)/(k + 1) edges from
EP − E and add them to E.

We can prove that the snapshot graphs generated by the
above procedure are scale-free. We omit the proof due to
space limitation.

6.1 Ordering Quality Analysis
Our first set of experiments evaluate the algorithms in

terms of their ordering qualities. Recall that INC finds the
Markowitz ordering, O∗(A1), of A1 and applies that to all
matrices Ai’s in the whole EMS. The ordering quality de-
grades with i as Ai gradually deviates from A1. Figure 5
shows the quality-loss ql(O∗(A1),Ai) vs. the matrix index
i for the two real datasets. We see that the quality-loss in-
creases with i as explained. Indeed, the ordering quality of
INC is quite poor. For Wiki, the average quality-loss (over
the 1000 matrices) is about 2. That means if a matrix Ai is
ordered by O∗(A1), on average, the number of “extra” en-
tries in Ai’s LU factors is twice the size of Ai’s LU factors
if Ai were Markowitz-ordered! The quality-loss reaches 2.7
for the last snapshot of the EMS.

By grouping similar matrices into a cluster and apply-
ing the same ordering only to matrices of the same cluster,
CINC and CLUDE give much better ordering qualities. Fig-
ure 6 shows the average quality-loss of the orderings given
6For publications that only have publication year, we evenly
distribute them to the dates of their corresponding years.
7A graph is scale-free if the distribution of vertices’ degrees
follows a power law: P (t) ∝ 1/tγ , where P (t) is the prob-
ability that a vertex has a degree t, and γ is a constant.
Following [4], we set γ = 3.
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Figure 5: INC: quality-loss vs. matrix index (i).
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Figure 6: Average quality-loss vs. similarity thresh-
old α.

by CINC and CLUDE as the α-clustering similarity thresh-
old varies. A larger α implies a more stringent similarity
requirement and thus clusters are more compact. It is thus
easier for the same ordering to cover all the matrices in the
cluster and yet it gives good ordering quality. This explains
why quality-loss drops as α increases. Comparing CINC and
CLUDE, CLUDE gives much better ordering qualities. This
is because while CINC uses the Markowitz ordering of the
first matrix in the cluster, CLUDE uses the Markowitz or-
dering of A∪, which covers all matrices in the cluster and
thus fits them better. For example, for the Wiki dataset,
when α = 0.95, the quality-losses of CINC and CLUDE
are 0.53 and 0.13, respectively. Compared with the aver-
age value 2 for INC, the quality-loss of CLUDE is 15 times
better than that of INC.

6.2 Efficiency Analysis
In this section, we compare the algorithms in terms of

speed. We express algorithms’ efficiency in terms of their
speedup factors over BF’s execution time. Figure 7 shows
the speedups as α varies. Note that INC does not cluster the
matrices and so its speedup is shown as straight lines in the
graphs. From the figure, we see that among the three algo-
rithms, INC is the slowest while CLUDE is the fastest. This
is despite the fact that INC determines only one Markowitz
ordering (on A1), performs only one full LU decomposition
(on A1) and applies (the supposedly) fast Bennett’s algo-
rithm to incrementally LU decompose all the other matrices
in the EMS.
The reason why INC is slow (only 2.6 times faster than

BF for the Wiki dataset) is due to its poor ordering qual-
ity. As we have explained, the Markowitz ordering of A1

is unfit for most of the other matrices in the EMS. Hence,
the LU factors computed by INC are huge. This signif-
icantly slows down the incremental decompositions (Ben-
nett’s). The speedups of CINC are generally above 5 for
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Figure 7: Speedup vs. similarity threshold α.
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Figure 8: CLUDE’s execution time breakdown
(Wiki dataset).

the Wiki set and CLUDE registers a speedup of 20. These
significant speedups are brought about by their much higher
ordering qualities. From Figure 7, we see how the perfor-
mances of CINC and CLUDE change with α. In particular,
their speedups drop when α is very close to 1. This is be-
cause a very large α value implies a very stringent clustering
requirement. In the extreme case, when α is very large, each
cluster contains only one matrix, which reduces CINC and
CLUDE to BF. We observe that the speedups of CINC and
CLUDE are very significant and quite stable unless α is very
large. We remark that selecting the threshold α is an en-
gineering effort as its best value depends on various factors
such as the nature of the graphs. Fortunately, it is not very
critical that the optimal α be found, as the algorithms per-
form very well over a wide range of α.

We further investigate the reasons behind the big perfor-
mance gap between CINC and CLUDE as shown by their
speedup curves. There are two factors that contribute to
the improvement of CLUDE over CINC: (1) CLUDE gives
better ordering quality than CINC, which leads to smaller
LU factors and thus faster decomposition time (full or in-
cremental). (2) CLUDE uses the universal symbolic sparsity
pattern to prepare the data structures for storing matrices’
LU factors. This greatly facilitates the incremental updat-
ing of the LU factors across matrices (see discussion in Sec-
tion 4). Both of these factors improve the speed of Bennett’s
algorithm, which incrementally decompose matrices.

CLUDE’s execution time consists of four components: (1)
Clustering time (tc): time to perform α-clustering on the
EMS. (2) Markowitz time (tM ): time to compute the Marko-
witz orderings of matrices (done once per cluster). (3) LU
decomposition time (td): time to perform full LU decom-
positions (done once per cluster on the first matrix of the
cluster). (4) Bennett’s time (tB): time to perform incremen-
tal LU decompositions (done on all matrices but the first
of each cluster). Figure 8(a) shows these four components
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Figure 9: Varying ∆E (Synthetic).
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Figure 10: Varying quality requirement β (DBLP).

when CLUDE is applied to the Wiki dataset over different
α values.
First, we see that tc is negligible and stays constant. Sec-

ond, we note that as α increases, fewer matrices are col-
lected in a cluster without violating the similarity constraint.
Hence, clusters are smaller and there are more clusters. Con-
sequently, tM and td increase with α. Third, tighter cluster-
ing implies better ordering quality (see Figure 6(a)), which
speeds up incremental decomposition. Therefore, tB drops
as α increases. Now, let us focus on the numbers when α =
0.95, which is the case when CLUDE gives the best speedup.
We see that tB dominates CLUDE’s execution time. In
fact, tB is also the dominating component of CINC’s exe-
cution time. Figure 8(b) gives a head-to-head comparison
between the tB components of CINC and CLUDE. We see
that CLUDE significantly outperforms CINC in tB by the
two factors mentioned above. This explains the big gap be-
tween their execution times.

6.3 Synthetic Dataset
Our next experiments evaluate the algorithms using the

synthetic dataset. The synthetic dataset allows us to vary
the various properties of the graphs (matrices) so that we
can perform various sensitivity studies. Figures 9(a) and (b)
compare the algorithms in terms of quality and speedup, re-
spectively, as the number of edge changes between snapshot
(∆E) varies. Note that a larger ∆E causes the matrices in
the EMS deviate more from A1. This makes INC’s order-
ing more unfit for the matrices, leading to worse ordering
quality. CINC and CLUDE, on the other hand, are very
adaptive. Through α-clustering, they maintain the similar-
ity of the matrices in the same cluster (by including more
or fewer matrices in a cluster) and thus their ordering qual-
ities remain stable as ∆E changes. However, faster evolving
matrices means more and smaller clusters. This increases
tM and td. Also, a larger ∆E makes incremental decom-
position slower, which increases tB . Hence the algorithms’
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speedups drop when ∆E increases. We remark that CLUDE
gives very impressive speedups (10-20) compared with oth-
ers (Figure 9(b)).

We have conducted many other experiments with the syn-
thetic dataset varying the various parameters of the syn-
thetic data generators. The general observations from these
results are that CLUDE gives the best ordering quality and
at the same time is much faster than INC and CINC. CLUDE
typically registers a speedup from 10 to 20. Due to space
limitations, we omit those results in the paper.

6.4 The LUDEM-QC Problem
Our last set of experiments compare the performance of

CINC and CLUDE in solving the LUDEM-QC problem. Re-
call that the problem can be efficiently solved for symmet-
ric matrices. Hence, we conducted the experiments on the
DBLP dataset, whose matrices are symmetric. Figures 10(a)
and 10(b) show the qualities and speedups of the algorithms
as the quality requirement β varies.

From Figure 10(a), we see that both CINC and CLUDE
are adaptive to β. In particular, when the requirement is
looser (a larger β), the algorithms employ bigger clusters so
that they can perform fewer full decompositions but more
incremental decompositions. The result is trading ordering
quality (increasing quality-loss, Figure 10(a)) for faster de-
composition (increasing speedup, Figure 10(b)). We observe
that both CINC and CLUDE are able to maintain an order-
ing quality that is well within the requirement. Between the
two, CLUDE gives higher ordering quality. Again, this is
because it uses the ordering of A∪, which covers all the ma-
trices in the same cluster. Moreover, CLUDE can provide
more than 10 times speedup. It significantly outperforms
the other algorithms.

7. CASE STUDY
To further illustrate the use of evaluating measures in

a graph sequence, we conducted a case study on a Patent
dataset [15]. This dataset contains information (e.g., patent
name, year granted, company, etc.) of 3 million U.S. patents
and the citations among them between 1975 and 1999. Ana-
lyzing the citations among patents can help us answer ques-
tions such as “How does company X depend on company
Y in technology development?” “How does the dependency
evolve over time?” These insights are useful in predicting
new alliances and acquisitions, which have much impact on
the companies’ stock prices. We use IBM as an example
subject of analysis.

We take the yearly snapshots of the patent citation graphs
spanning 1979 to 1999. Based on a citation graph, we mea-
sure the proximity of company Y from company X by sum-
ming the PPR scores of Y ’s patent nodes using X’s patent
nodes as the set of starting seed nodes.

Taking IBM as company X, Figure 11 shows the prox-
imity of a few representative companies from IBM over the
years from 1979 to 1999. In the figure, we show the ranks
of the companies based on their proximity scores. The fig-
ure reflects how much IBM depended on other companies
in its technology development. For example, Xerox devel-
oped Alto (widely regarded as the first PC) and invented the
Graphical User Interface (GUI), which are important com-
ponents of IBM PC’s development. Xerox thus maintained
a high rank during those 20 years.

Among the seven companies shown in Figure 11, Harris,
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Figure 11: PPR score rankings (IBM patents as seed
nodes).

an international telecommunications equipment company,
stands out. While the ranks of others were quite stable,
Harris’ rank increased steadily since 1979. This trend is a
good predictor of a closer collaboration between the com-
panies. In fact, in 1992, IBM and Harris announced their
alliance to share technology and to capitalize their strengths
in technology development. Harris’ stock price hit a closing
high shortly after the announcement. This case study shows
that the trends of various graph measures over a graph se-
quence could provide interesting insights that are beyond
what measures from a single graph can derive.

8. RELATED WORK
EGS processing was first introduced in [25], which studies

the computation of the shortest path distance between two
nodes across a graph sequence. Our clustering approach
shares some favor with that presented in [25].
There are a number of studies on efficient computation of

the various measures, such as PR/SALSA/PPR/DHT/RWR,
on single graphs [22, 18, 12, 14, 23, 10, 11]. One interest-
ing approach is approximation methods. Two such popular
methods are the power iteration (PI) method [6] and the
Monte Carlo (MC) method [10]. For example, to compute
RWR scores, PI iteratively refines the solution x based on

the recurrence relation x
(k+1)
u = dWx

(k)
u + (1 − d)qu and

MC simulates random walks to approximate the stationary
distributions. PI or MC have to be executed once for every
input query qu. In contrast, our problem is to decompose
a matrix such that queries can be answered very efficiently.
For example, with our Wiki dataset, answering queries after
matrices are LU-decomposed is about two orders of magni-
tude faster than answering them using either PI or MC.
There are fast solutions for answering some very specific

queries that exploit matrix sparsity [11, 12]. For example,
in [11], sparse matrix decomposition is used to find the top-k
nodes of the highest RWR scores in a graph. These studies
focus on processing single graphs. Instead, our work focuses
on processing graph sequences and to answer queries which
involve general Gaussian Elimination.
There are algorithms (e.g.,[8, 3]) for incrementally main-

taining specific measures when the underlying graph changes.
For example, [3] employs the MC method and stores a num-
ber of random walk segments (RWS’s) in a database. When
the graph changes, the stored RWS’s are updated accord-
ingly. PPR scores are then approximated based on the
stored RWS’s. Our algorithms compute exact measures in-
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stead of approximation and they are not restricted to a
specific measure. Also, after matrices are LU-decomposed,
query answering can be done much faster than those incre-
mental measure maintenance solutions. For example, with
our Wiki dataset, our approach is at least an order of mag-
nitude faster.

In recent years, there are works on processing graph streams
[19, 21]. Their focus is on how to detect interesting changes
and how to perform fast aggregations as graphs arrive. For
example, [19] studies how to detect sub-graphs that change
rapidly over a small window of the stream. Like other stud-
ies on stream processing, the data (graphs) that arrives in
the stream is not archived. This limits the kind of analyses
that can be performed. In contrast, we focus on decompos-
ing the matrices in a graph sequence such that more complex
analytical tasks can be done efficiently.

9. CONCLUSIONS
In this paper we studied the LUDEM problem and its

quality-constraint variant LUDEM-QC. We illustrated that
by decomposing the matrices in an EMS into their LU fac-
tors, interesting structural analyses on a sequence of evolv-
ing graphs can be carried out efficiently. We gave an in-
depth discussion on matrix reordering and incremental LU
decomposition, based on which we designed our solutions for
the LUDEM problem. Through extensive experiments, we
analyzed our algorithms and showed that CLUDE outper-
formed the rest. Over a wide range of settings, CLUDE sig-
nificantly outperformed the straightforward incremental al-
gorithm (INC) both in terms of ordering quality and speed.
Typically, CLUDE’s quality-loss was more than 10 times
smaller than that of INC. Also, CLUDE registered a speedup
that in most cases was at least an order of magnitude faster
than the brute-force approach.
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