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Abstract

Monitoring team activity is beneficial when human
teams cooperate in the enactment of a joint plan.
Monitoring allows teams to maintain awareness of
each other’s progress within the plan and it enables
anticipation of information needs. Humans find
this difficult, particularly in time-stressed and un-
certain environments. In this paper we introduce
a probabilistic model, based on Conditional Ran-
dom Fields, to automatically recognise the compo-
sition of teams and the team activities in relation
to a plan. The team composition and activities are
recognised incrementally by interpreting a stream
of spatio-temporal observations.

1

In many real-life scenarios human teams need to cooperate
towards the achievement of one or more goals during the
enactment of a joint plan. Examples of such scenarios are
disaster relief operations, crowd management at major out-
door events, and search-and-rescue missions [Sukthankar et
al., 2008]. Monitoring team activity is essential when time is
a critical factor for the success the plan and the operating en-
vironment is uncertain. Monitoring allows teams to maintain
awareness of each other’s progress within the plan, it helps to
keep interdependent tasks synchronised, and it enables antic-
ipation of information needs. Monitoring has become easier
to perform thanks to the development of wireless sensor net-
works that can collect large amounts of environmental data
during plan execution. There is, however, a risk that process-
ing that data may result in cognitive overload for humans,
therefore hampering effective decision-making.

We propose the multi-agent architecture illustrated in Fig-
ure 1 to monitor team activity during plan execution. At the
lower level, a software agent is associated with each team,
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working as that team’s assistant. Team members usually em-
ploy teamwork when acting in a time-critical scenario, hence
their movement patterns will be related in time and space.
The team as a whole will also exhibit recognisable behaviour
patterns (e.g., tactics or manoeuvres). Machine learning tech-
niques can be applied to learn such patterns, so that the agent
can infer the team composition and perform activity recog-
nition based on the team members’ locations. Recognised
activities A; are represented as hexagons in Figure 1.

At the upper level, activities A; will be used as evidence
about the plan progress by matching them against atomic plan
actions. This process can identify active plan branches (bold
grey path in Figure 1) but can also be exploited to detect devi-
ations from the expected course of action. We assume that a
software agent has some knowledge about the plan structure
(STask;) and dependencies (links between ST'ask;). These
could be of any nature (e.g., ordering/time constraints, team
size) and are usually specified as part of the joint plan.

In this paper we focus on team composition and activity
recognition (lower level in Figure 1). Existing research on
probabilistic models for activity recognition has mainly fo-
cused on single subjects, rather than teams. In addition, pre-
diction is mostly performed on complete observation traces,
rather than on a observation window (see Section 2). Even
when classification is performed incrementally on a window,
the computational cost depends on the window size, and little
attention is dedicated to the cost of aggregating sensor data
into features for efficient classification. These aspects are key
to performing incremental prediction when software assis-
tants are implemented into portable, resource-limited devices.
In Section 4 we introduce a probabilistic model to recognise
teams and activities incrementally from a stream of obser-
vations. The model is based on Conditional Random Fields
(see Section 3). It can perform inference over an observation
window in polynomial time independent of the window size,
or on the entire sequence. It also scales well with respect
to the number of observed subjects. In Section 5 we evalu-
ate the model on spatio-temporal observations collected from
artificial players acting in a virtual environment. We finally
conclude in Section 6.

2 Related Work

The two main approaches to activity recognition are tem-
plate-based matching and probabilistic graphical models.
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Figure 1: Incremental activity and plan recognition architecture

Template-based matching for team activity recognition [Suk-
thankar and Sycara, 2006] relies on a library of team be-
haviours, usually acquired by encoding experts’ knowledge
about the application domain. This approach attempts to
match observed team features against the library in order to
find one or more suitable labels for the observations. Tem-
plate-based matching does not usually require machine learn-
ing because relationships between observations and labels are
encoded in the library. Considerable effort, however, has to
be put into eliciting the appropriate knowledge and encoding
it into the library; in addition, particular care is required in
designing matching algorithms that are robust to noise in the
observations [Nguyen et al., 2003].

In recent years, machine learning techniques, and in par-
ticular probabilistic graphical models, have received much
attention because of their ability to effectively learn and in-
fer activities from spatio-temporal observations. Conditional
Random Fields (CRFs) are probabilistic models that were first
applied to pattern recognition tasks in natural language pro-
cessing, but they have become popular for activity recogni-
tion. Linear CRFs have been employed to identify the role
of single robots in a game of Tag according to their loca-
tions [Vail et al., 2007] and to recognise player roles in the
RoboCup domain [Vail et al., 2008], where two teams of
computer-controlled robots compete in a football match. Re-
lational Markov Networks [Liao et al., 2007a] have been used
to model a person’s high-level activities (being at work, be-
ing at home, travelling) and significant places visited, based
on GPS traces of that person’s movements throughout the day.
[Liao et al., 2007b] has introduced a Dynamic Bayesian Net-
work for learning and inferring transportation routines. That
model was able to detect deviations from the routine, and to
predict a person’s location both in the short (e.g., change at a
bus stop) and long term (e.g., travel to work or home).

Observations other than spatio-temporal traces can be used
as well; in [Lian and Hsu, 2009], Factorial CRFs trained with
annotated audio recordings were used to learn and classify
chatting activity in meetings and public occasions. In [Yin et
al., 2009], Dynamic CRFs were shown to perform well in de-

tecting events (e.g., presence of light) generated by a network
of sensors distributed in an environment of interest. In com-
mon with to our approach, relationships among sensor read-
ings in response to events were exploited to create meaningful
features for classification. Most of that work relies on com-
plex probabilistic models which may offer an increased accu-
racy in recognition, but required iterative, approximate infer-
ence algorithms whose running time cannot be characterised
well in terms scalability with respect to the window/sequence
size and the number of features.

3 Conditional Random Fields

Conditional Random Fields (CRFs) [Lafferty et al., 2001] are
probabilistic graphical models to perform relational learn-
ing on data sequences. Given a sequence of 1" observations
x = (z1,...,2z7) and a sequence of corresponding hidden
variables y = (y1,...,yr), @ CRF represents a conditional
distribution p(y|x) as an undirected graph G. Nodes in G be-
long to the set {y; }U{x;} and edges capture dependency rela-
tionships between observations and hidden variables. Hidden
variables y; assume values from a finite set of labels )). The

distribution p(y|x) is computed as:
)= ] ¥eleeye)

p(ylx H Te(Xe: Vo),
y'€Ycec
(1

In (1), C is the set of cliques in G, ¥, is a potential function,
or factor, associated with clique ¢, y. C {y:}, x. C {z:}

and )AJ = YT is the set of all possible label sequences. Z is
the normalising partition function that guarantees p(y|x) is a
valid probability distribution.

In our approach, we use Linear CRFs (LCRF, see Figure 2),
which impose a first-order Markov assumption on the hid-
den variables and have a factor for each sequence position.
In LCREFs, factors are defined as a linear combination of M
features f; weighted according to a real-valued vector A:

M
Upa(x,y)=exp (Z A fi(Ye—1,ye, %, t)) 1<t<T (2)

i=1
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Figure 2: A Linear Conditional Random Field (LCRF)

Features f; are real-valued functions that capture domain-
specific relationships between graph nodes belonging to the
same factor. They encode preferred label values for the hid-
den variables y;_1, y; according to some cues gathered from
the observation sequence x at time t.

LCRFs are related to Hidden Markov Models (HMMs), but
they relax the assumption that the observations in the se-
quence be mutually independent. This has two advantages:

e The model can accommodate overlapping, interdepen-
dent features. In addition, preferred label transitions can
be made dependent on the features, making LCRF more
suitable to perform inference on spatio-temporal traces

[Vail et al., 2007].!

e The forward-backward and Viterbi algorithms for effi-
cient exact inference can be adapted to work for LCRFs
[Sutton and McCallum, 2006].

Features are represented as a matrix random variable F}(x) =
(U x (%, ¥ (g1 w0)=(' ) |- Where (¥, y) € Y x Y, and the
forward and backward vectors o and 3 are defined as in (3).2
Marginal probabilities are computed as in (4).

ai(y1) = Fl(X)[J—7y1]7 ar(ye) = a1 (ye—1) - Fr(x) (3a)
Br(yr) =17, Bi(y) = Fir1(x) - Bey1(yer1)  (3b)

i (y) - Be(y) _
T Z(x) =3 yeyor(y) 4

Given a training set £ = {(x1,¥1),...,(Xn,¥yn)} of N
observation/label pairs, a LCRF is trained by computing the
optimal weights A* that maximise the log-likelihood £ (€):

€)= S log plxilys) = 0L, A2/20% (5)
A* = argmax, £5(&) (6)

where o is a regularisation parameter to avoid over-fitting.
Because /(&) is convex with respect to A, the maximisation
can be performed via numerical gradient techniques. We em-
ploy the limited-memory BFGS algorithm [Zhu et al., 1997].

p(ye = ylx) =

4 Team and Activity Recognition Model

Our model is based on the intuition that the spatio-temporal
traces of subjects working in a team will exhibit coordina-
tion patterns. These patterns can be exploited to learn and

"For example, consecutive measurements of a human subject’s
position or velocity are dependent, assuming that the sampling is
performed at a sufficiently high rate.

2] is a special symbol that identifies the start of the sequence.
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classify that team’s members and activities. For example,
teammates will try to maintain visual contact by remaining
close over time; this can be captured by monitoring whether
the distance among subjects falls within a particular thresh-
old. Subjects’ velocities and accelerations offer good cues as
well; teammates usually adjust their speed to maintain unifor-
mity throughout the performance of an activity. Team activ-
ities will also show temporal consistency between consecu-
tive time steps. These intuitions are captured in Figure 2; the
links between y;_1,y; and x encode those patterns, whereas
the link between y;_1, y; guarantees temporal consistency.

In our scenario, S subjects act in a virtual environment.
The observation sequence is x = {p1,...,pr}, where p; s
contains the 2D position of the s-th subject at time ¢t. S =
{s1,...,85,0} is the set of all subjects, where © is a ficti-
tious subject that represents single-subject teams.

4.1 Features

Features play two crucial roles: during learning, they should
favour relationships that achieve a good model accuracy; dur-
ing classification, their computational cost should scale well
according to the model size. We define our features as:

Jilye—1,95,%, 80, 1) = Ly (ye—1) X L,y (ye) X Lo(80) X
(51,.92)( (s1,82)

X score; ((gz o (Xt+W))) (N

In (7), 1 4(-) is the indicator function which takes value 1 if
(+) belongs to the set A and 0 otherwise; I; € Y and ls € Y
are label values capturing preferred transitions for two con-
secutive hidden variables; O C S is the set of subjects for
which the feature is active; s, € S is the subject we wish to
find a teammate/activity for; gi(sl’sz) computes a spatio-tem-
poral cue for the pair (s1, s2) € S X S; and score; aggregates
and rates the cues over an observation window of interest.
The observation window is centred at the current observation
and has length 2WW + 1.

Features for Team Recognition
Grouping subjects into teams is challenging because the num-
ber of possible teams grows exponentially with S, even if
subjects cannot belong to multiple teams [Sukthankar and
Sycara, 2006]. Considering all possible teams as label val-
ues )V would render inference infeasible. The same would
happen if the cues g; were defined over all subject subsets.
For these reasons, we created features that match one subject
with one of the possible teammates. Because there are only
O(S?) subject combinations, we can introduce a O(S?) num-
ber of simple features, where the cost for individual feature is
O(1). Therefore, the feature computational cost scales well
with respect to the team size. The cost can be reduced even
further if features are computed locally by sensors attached to
each subject and then collected centrally for classification.
We encoded the features listed in Table 1 in a single LCRF
(rather than one per subject) where we set ) = S. The LCRF
will learn to associate each subject s, with a teammate. Note
that cues in Table 1 are not based on raw subject positions
P¢,s- This would make the model dependent on the particular
environment (e.g., the same team often appears at a particular
location). Although this might improve the performance for
that environment, it would also result in overfitting.

X W),



# (I1,12) o 531’32) Description
11 (any,s),s €S S 1 Transition probability
’ (s',s) S xS S\ {l2} Prior probability
1.2 any,s),s €S {l2} -1 Penalty for self-association
1.3 (any, s2),s82 € S {s1},s1 € S\ {l2} || distance(s1, s2)|| Proximity intercept
1.4 || distance(s1, s2)|| Pairwise distance
L5 | distance’(s1, s2)|| Distance velocity
] / distance’(s1, s2) compatibility
16 (s2,52) {s1} [[distance” (s1, s2)]] Distance acceleration
s2 € S\ {6} s1 €S\ {lz,8} / distance’ (s1, s2) compatibility
L7 and and | velocity (s1)]|/]| velocity(s2)]] Pairwise velocity
' (any, s2),s2 € S S\A{l, l2} vt / velocity(s1) — £ velocity(sz2) compatibility
18 |l acceler(s1)]|/|| acceler(ss2)|| Pairwise acceleration
/ acceler(s1) — / acceler(s2) compatibility
distance(si, s2) velocity(s1) .
19 [distance(s:, 55)|  |[velocity (s1)]] s1 following s

Table 1: Features for team recognition

Features for Activity Recognition

Subjects can perform a finite set of behaviours B (see also
Section 5), so we created a second single LCRF with )) = B.
The LCRF will learn to associate each subject s, to the activ-
ity the team s, belongs to is performing. Features are similar
to those listed in Table 1, where values for /; and [5 belong
to B rather than S. We left out cues of type 1.3 and instead
included label transition features linked to the subjects’ indi-
vidual speeds and accelerations. We also included label tran-
sition features accounting for each subject’s team size.

Scores

Each cue gisl"”) in Table 1 is associated to a score 0 <
score; < 1 expressing how likely is that s; and s, belong
to the same team. For example, cues 1.3 and 1.4 will be
given a proportionally higher score the closer s; and s, are.
Similarly, cues 1.7 will be given a higher score the more
similar the subjects’ velocities are. It is essential that cue
scores be aggregated incrementally over the observation win-
dow. In our model we simply average the cue scores. An
average Zf\il 2;/N can be incrementally computed by keep-
ing numerator and denominator separate. When a new value
T +1 arrives, the numerator is updated by subtracting x; and
adding x 1. Other scoring algorithms can be used as long
as the incremental update property is guaranteed.

4.2 Incremental Forward-Backward

Classification on a moving window consists of assigning the
best individual label to each hidden variable ;. Given an
unseen observation window Xy, = (T} _opys -+, TF o )s
Yt = argmax,, ¢y p(y’|x;W), where ¢ is the current time
step. This can be performed by applying the forward-back-
ward algorithm in (3) and (4), where o; and 3, are:

o = 1- At; At = Ft—W(XZ:W) L. Ft(X;W) (Sa)
B, =B 1", By=F(xw) ...  Fuw(xiw) (8b)

with a time complexity of O(W|Y|?) (window size times ma-
trix multiplication). When a new observation arrives, y;1
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could be computed with an application of (8) to x;; y;, but
we compute it more efficiently by updating the forward-back-
ward vectors as oz 1 = 1- Apyq, By = Bigr1 - 17 where
A1 and By are the solutions of the linear systems:

(9a)
(9b)

Frw(xiw) A = Ar - Frp(X0,w)
Fip1(x{w) - Beyr = Be - Frow 1 (Xi41,w)

with a time complexity of O(]V|?) (matrix multiplication
and system solution computation). Both (8) and (9) require
O(W1Y|?) memory to store the F; over the window. Because
computing the features requires O(|)|?) time at each time
step (see Section 4), inference complexity remains O(|V|?).
There is a limitation in this approach; if some of the F; are
ill-conditioned, the system solutions may be very difficult to
compute, even for mainstream linear-algebra packages (e.g.,
LAPACK). When this happens, we regularise F; using the Sin-
gular Value Decomposition (SVD) [Neumaier, 1998]. When
F; isill-conditioned, some of its singular values are very close
to zero, or zero. We set those to 1, so that F; becomes full-
rank and the system solutions can be computed. Computing
the SVD requires O(|YV|?) time, but has a significant hidden
constant (22); however, because few F; require regularisa-
tion, this cost can be amortised throughout the window. This
approach does not completely avoid recomputing the win-
dow via (8); round-off errors will eventually make it neces-
sary. This condition can be detected by checking A;y; and
By, for negative entries. Those are invalid because A;;1
and By are products of matrices with non-negative entries
(see (2)). We analyse how often this happens in Section 5.

4.3 Incremental Viterbi

Instead of assigning the best label to each y;, the Viterbi al-
gorithm in (10) can be used to compute the most likely se-
quence of labels y* = argmax__5; p(y|x*), given an unseen

sequence x*. In (10), §;(y) is proportional to the probability
of the most likely label sequence (y7,...,y;_ ;) ending with
y+ = y; ¢+(y) encodes the optimal label transition path lead-
ing to y; = t given the optimal labels up to time ¢ — 1.
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Figure 3: Path matrix P for incremental Viterbi

01(y1)=F1(x")[L, ], 5t(y):$g§5t_1(y')‘Ft(X*)[y’,y]

d1(y1) = L, ¢i(y) = argmax g1 (y')- Fr(x") [y, 9]

y' ey

(10)
The sequence y™* is retrieved by starting from the most likely
final label y7. = argmax,, ¢y dr(y’) and evaluating y; =
¢t+1(y;11), T —1 > t > 1. This, however, requires reach-
ing the end of the observation sequence before obtaining any
labelling. It also means that the memory required to store &
and ¢ may exceed that available on the host system.

We shall instead apply the incremental Viterbi algorithm
introduced in [Bobbin, 2007]. The algorithm relies on the
path matrix P = [¢y, ..., ¢y, ..., @,] shown in Figure 3. P
is a collection of trees where nodes at time ¢ represent label
values for y;. Tree paths in ® identify the most likely label se-
quences ending with y; = y. It may happen that at some time
k, all paths are rooted at a unique initial label y; (common
root). When this happens again, let us assume at time ¢, it is
possible to output the classification (yj, ..., y;) up to time k
(the black path in Figure 3). At this point the mechanism can
restart on a new path matrix P’ = |y, 1,..., P, ..., Py].
The incremental Viterbi algorithm does not guarantee to out-
put a new prediction for each new observation, and the worst-
case complexity is O(T|V|?). Nonetheless, a partial classifi-
cation can be obtained based on the frequency of the common
roots, hence dramatically reducing memory usage.

5 Experimental Evaluation

We evaluated our recogniser on spatio-temporal traces col-
lected from the shooter game OpenArena, an off-the-shelf
game that provides a challenging environment for activity
recognition.> Teams form and disband rapidly and players’
behaviour is highly dynamic. We collected data from a cap-
ture-the-flag game; two opposing squads (red and blue) aim
to get a flag located in the middle of the game scenario and
to bring it to the opponent’s base, while protecting their own
base. When a squad succeeds, the flag returns to the middle.
We have instrumented the game to run simulated games
using the embedded Al players (bots). Bots are implemented
as finite state machines whose states identify basic actions
(e.g., fight, swim). Bot squads can organise themselves in
smaller teams pursuing higher level tasks (e.g., defend own
base, get flag, attack enemy base). We trained two LCRFs
on 30 minutes of data sampled every 2 seconds on a game
played by two squads of 10 players each. For the first LCRF

3See http://openarena.ws for more information.

we labelled each subject with a teammate, whereas for the
second we labelled each subject with the corresponding team
activity. The results are based on three-fold cross validation.

Team recognition

The team recognition performance is based on a comparison
between the recognised teams and the ground truth at each
time step. Given that team-recognition produces pairs of sub-
jects and their probability of belonging to the same team,
we need to reconstruct teams from these pairs. We order
the subject pairs by decreasing probability, then we greed-
ily group pairs into teams by merging pairs with common
subjects according to the ordering. We order the recognised
and actual teams by size, then we evaluate the average pre-
cision and recall. Given P = {recognised team members},
M = {actual team members}, Precision=|P N M|/|P| and
Recall=|P N M|/|M|. The results are shown in Table 2, for
different sizes of the observation window W.

For W = 0 (no window) the model is similar to a HMM, be-
cause all features linked to label transitions (e.g., velocity, ac-
celeration) are not considered. This results in a lower recall.
The recall increases sharply as soon as the window opens.
Precision and recall do not show large variations with respect
to the window size, but they tend to decrease as the window
size increases. This means that a shorter window better cap-
tures team dynamics than a longer one. When the window
size grows, increasingly old observations become less rele-
vant and degrade the model performance. Note also that the
number of times it is necessary to recompute the window for
the incremental forward-backward (W reset) decreases as the
window size increases. Considering a larger window proba-
bly allows the linear system solver to perform better.

Activity recognition

Although bots can still perform different basic actions when
in the same team, we are interested in recognising the higher
level team activities. Therefore, we trained the activity-recog-
nition LCRF by labelling each teammate with the correspond-
ing team-level activity. The label set is B = {attack enemy’s
base, stay at own base, patrol own base, get flag, recover flag
when lost, bring flag to enemy’s base}. We then evaluated
the LCRF on the average number of correct label assignments
using different window sizes. Results are shown in Table 3,
for different sizes of the observation window .

Given that the probability of randomly guessing a subject’s
activity is 16.67%, the model performs better than chance,
but not extremely well. Activities are probably challenging
to recognise using the features we introduced in Section 4 be-
cause they depend on that subject’s raw position; for example
capturing the flag often happens in the middle of the map,
and the location of the bases offers a good indication about
whether a subject is attacking or defending. There is, as be-
fore, a sharp improvement in the performance when W > 0
and a slight decrease as the window size increases.

6 Conclusion

In this paper we introduced a probabilistic model to perform
incremental team composition and activity recognition on a
stream of observations. We evaluated the model on spatio-
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Incremental Forward-Backward

Incremental Forward-Backward

W  Squad Precision Recall F-score W reset Squad Osec. 2sec. 4sec. 8sec. 16sec. 30 sec.
0 red 63.33 45.64 53.04 o/a red 22.58 52.38 4834 48.62 47.76 44.49
sec. blue 63.87 44 .41 52.39 blue 290.64 4344 4424 39.65 39.65 41.32
2 red 63.83 56.26 59.80 26.54
sec. blue 61.37 54.88 57.94 26.74 Incremental Viterbi
4 red 59.88 59.24 59.55 22.83 Squad Osec. 2sec. 4sec. 8sec. 16sec. 30 sec.
sec.  blue 6079 5703 5885 2351 red 4121 5069 4820 51.04 5047 4555
S brfd 2?'2; g%g ggéz }g'gg blue  39.67 4418 4385 4107 3985 4126
R . ue . . . .
5162 ;ﬁi gg?g gggé 2;?; iggg Table 3: Activity recognition accuracy (%)
30 r]ed 51';2 5337 55.09 ;0'16 chical Conditional Random Fields. The Int. Journal of
sec.  blue 55 5245 53719 0.19 Robotics Research, 26(1):119-134, 2007.
Incremental Viterbi [Liao et al., 2007b] L. Liao, D. J. Patterson, D. Fox, and
W  Squad Precision Recall F-score H. Kautz. Learning and inferring transportation routines.
Artificial Intelligence, 171(5-6):311-331, 2007.
sgc tfﬁi ig?g ;g;g gg}; [Neumaier, 1998] A. Neumaier. Solving ill-conditioned and
3 . 3 3 8. 5 3 5' 21 57' 3 singular linear systems: A tutorial on regularization. SIAM
re : : : Review, 40(3):636—-666, 1998.
sec. blue 55.11 54.77 54.93 .
4 red 37.89 36.86 37.37 [Nguyen etal., 2003] N. T. Nguyen, H. H. Bui,
sec. blue 57.92 56.72 57.31 S. Venkatesh, and G. West. Recognising and monitoring
g red 5508 5061 5773 high-level behaviours in complex spatial environments. In
sec. blue 56.75 54.43 55.56 Proc. of the IEEE Computer Society Conf. on Computer
16 ed 50.03 5046 3486 Vision and Pattern Recognition, Wisconsin, USA, 2003.
sec. blue 51.78 56.35 53.96 [Sukthankar and Sycara, 2006] G. R. Sukthankar and
30 red 49.29 57.80 53.20 K. Sycara. Robust recognition of physical team be-
sec. blue 54.11 54.14 54.12 haviours using spatio-temporal models. In Proc. of

Table 2: Team recognition performance (%)

temporal traces collected from artificial players acting in a
highly dynamic environment. The model performed reason-
ably well when recognising team composition, whereas per-
formance for activity recognition is not very conclusive. In
the future, we shall investigate in more detail whether it is
possible to improve the activity recognition performance. Fi-
nally, we plan to evaluate the performance of our model on
traces collected during a simulation with human subjects.
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