DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

L.-T. Yuan

Long-Tu Yuan

East China Normal University

email: [email protected]

X.-D. Zhang

Xiao-Dong Zhang

Shanghai Jiao Tong University

email: [email protected]

Title:

Extremal graphs for even linear forests in bipartite graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(1) (2024) 5-16

Received: 2020-09-20 , Revised: 2021-08-03 , Accepted: 2021-08-03 , Available online: 2021-08-24 , https://doi.org/10.7151/dmgt.2429

Abstract:

Zarankiewicz proposed the problem of determining the maximum number of edges in an $(n,m)$-bipartite graph containing no complete bipartite graph $K_{a,b}$. In this paper, we consider a variant of Zarankiewicz's problem and determine the maximum number of edges of an $(n,m)$-bipartite graph without containing a linear forest consisting of even paths. Moveover, all these extremal graphs are characterized in a recursion way.

Keywords:

bipartite graph, linear forest, extremal graph, Turán number

References:

  1. H. Bielak and S. Kieliszek, The Turán number of the graph $2P_5$, Discuss. Math. Graph Theory 36 (2016) 683–694.
    https://doi.org/10.7151/dmgt.1883
  2. N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837–853.
    https://doi.org/10.1017/S0963548311000460
  3. P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959) 337–356.
    https://doi.org/10.1007/BF02024498
  4. R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolourings, J. Combin. Theory Ser. B 19 (1975) 150–160.
    https://doi.org/10.1016/0095-8956(75)90080-5
  5. Z. Füredi and M. Simonovits, The history of degenerate $($bipartite$)$ extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25, L. Lovász, I.Z. Ruzsa and V.T. Sós (Ed(s)), (Springer, Berlin 2013) 169–264.
  6. I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661–667.
    https://doi.org/10.1007/s00373-010-0999-5
  7. A. Gyárfás, C.C. Rousseau and R.H. Schelp, An extremal problem for paths in bipartite graphs, J. Graph Theory 8 (1984) 83–95.
    https://doi.org/10.1002/jgt.3190080109
  8. B. Jackson, Cycles in bipartite graphs, J. Combin. Theory Ser. B 30 (1981) 332–342.
    https://doi.org/10.1016/0095-8956(81)90050-2
  9. Y. Lan, Z. Qin and Y. Shi, The Turán number of $2P_7$, Discuss. Math. Graph Theory 39 (2019) 805–814.
    https://doi.org/10.7151/dmgt.2111
  10. J.-Y. Li, S.-S. Li and J.-H. Yin, On Turán number for $S_{\ell_1}\cup S_{\ell_2}$, Appl. Math. Comput. 385 (2020) 125400.
    https://doi.org/10.1016/j.amc.2020.125400
  11. X. Li, J. Tua and Z. Jin, Bipartite rainbow numbers of matchings, Discrete Math. 309 (2009) 2575–2578.
    https://doi.org/10.1016/j.disc.2008.05.011
  12. J.W. Moon, On independent complete subgraphs in a graph, Canad. J. Math. 20 (1968) 95–102.
    https://doi.org/10.4153/CJM-1968-012-x
  13. M. Simonovits, A method for solving extremal problems in extremal graph theory, in: In Theory of Graphs, P. Erdős and G. Katona (Ed(s)), (Academic Press 1968) 279–319.
  14. P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok. 48 (1941) 436–452, in Hungarian.
  15. L.T. Yuan and X.D. Zhang, The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132–139.
    https://doi.org/10.1016/j.disc.2016.08.004
  16. K. Zarankiewicz, Problem $101$, Colloq. Math. 2 (1951) 301–301.

Close