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ABSTRACT
We present a method for implementing shrinkage of treatment

effect estimators, and hence improving their precision, via experi-

ment splitting. Experiment splitting reduces shrinkage to a standard

prediction problem. The method makes minimal distributional as-

sumptions, and allows for the degree of shrinkage in one metric

to depend on other metrics. Using a dataset of 226 Facebook News

Feed A/B tests, we show that a lasso estimator based on repeated

experiment splitting has a 44% lower mean squared predictive error

than the conventional, unshrunk treatment effect estimator, a 18%

lower mean squared predictive error than the James-Stein shrink-

age estimator, and would lead to substantially improved launch

decisions over both.
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1 INTRODUCTION
As the cost of experimentation decreases, researchers are increas-

ingly able to collect data on multiple, related experiments, which

test similar kinds of changes [6, 8, 15, 27, 30]. Technology compa-

nies may test multiple versions of the machine learning models

determining what content is shown to users, where models may

differ in their features, architecture, hyperparameter values, or the

optimization algorithm used. This raises the prospect of being able

to improve inferences for any given experiment, by using the in-

formation contained in the other, related experiments. In Bayesian

terms, estimating a prior for treatment effect sizes based on previ-

ous experiments, and updating it given the data from the current

experiment, may yield a better estimate of the true treatment effect

than would be possible given the current experiment’s data alone.

This kind of empirical Bayes analysis has a rich history in statis-

tics [11, 12, 19, 22, 31]. With the proliferation of A/B testing, it is

increasingly relevant to the modern analysis of experimental data.
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We propose a methodology for performing nonparametric, mul-

tivariate empirical Bayes shrinkage, which turns the shrinkage

problem into a standard prediction problem. The basic idea is as

follows: we split each experiment randomly into two subexper-

iments, each with their own test and control group. We regress

the estimated treatment effect in the first subexperiment on the

estimated treatment effect in the second subexperiment. Because

the dependent variable is unbiased, this regression also estimates

the conditional mean of the true treatment effect, given the data in

the second subexperiment. In other words, it is an empirical Bayes

estimator of the parameter of interest. Other variables likely to be

predictive of the treatment effect can be added as covariates into

this regression, including estimated treatment effects on auxiliary

metrics in the second subexperiment. The prediction algorithm

used may be a simple linear regression, but could also be more flex-

ible and nonparametric, allowing for nonlinearities, interactions,

and regularization of covariates.

In this methodology, the prior distribution of treatment effects

is not explicitly estimated.
1
Instead, we directly estimate the condi-

tional mean of the treatment effect given the observed data, using

the experiment splits. Other experiments implicitly determine the

prior, and hence the degree of shrinkage implied by this conditional

mean. This raises the question of how to choose the fraction of data

allocated to the first and the second subexperiments. We derive an

expression for the mean squared error of the experiment splitting

estimator with univariate least squares shrinkage, and characterize

the limiting behavior of the optimal experiment splitting fraction

as a function of the number of experiments and the variance of

treatment effects and sampling error.

Using a dataset of 226 Facebook News Feed A/B tests, we evalu-

ate the performance of experiment splitting estimators relative to

the leading alternatives, including other empirical Bayes shrinkage

estimators. We find that experiment splitting reduces mean squared

prediction error by 44% compared to the conventional, unshrunk

estimator, by 18% compared to James-Stein shrinkage, and by 13%

compared to the “Tweedie” estimator. Launching all experiments

with positive estimates results in a 40% higher estimated cumulative

lift for the lasso than the unshrunk estimator. While experiment

splitting generates some performance improvements from flexible,

nonparametric shrinkage and appropriate regularization of treat-

ment effect predictors, we find the main gains are attributable to the

multivariate shrinkage that experiment splitting straightforwardly

enables. Estimated treatment effects in one metric may reveal in-

formation about the true treatment effect in another metric, and

1
Other empirical Bayes methods which avoid estimating priors are surveyed in [18],

including Robbins’ formula [31], the local false-discovery rate [17], and Tweedie’s

formula [16].
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experiment splitting makes it easy to incorporate this covariance

information.

We focus on shrinkage of treatment effect estimators across

experiments, but the idea of using split sample regressions to gen-

erate better estimators applies more broadly. If the heterogeneity

in treatment effects across user subgroups within an experiment is

of interest, experiment splitting can be applied at the level of user

subgroups within a single experiment. In non-experimental settings

where multiple means from separate samples are being estimated,

sample splitting can be used to determine the appropriate degree

of shrinkage for each sample mean.

Relative to existing work on empirical Bayesian shrinkage, which

we discuss in Section 2, our contribution is to formulate the shrink-

age problem as a prediction problem to which standard machine

learning algorithms can be applied. This leads to easy-to-implement

algorithms for very general forms of shrinkage, which do not re-

quire parametric assumptions on the treatment effect or sampling

error distributions, and which allow for incorporating information

from a potentially high-dimensional vector of auxiliary metrics.

While using split sample regressions to shrink treatment effect

estimates appears to be new to the literature, other applications

of sample splitting for causal inference abound. Sample splitting

has been proposed as a means for constructing valid confidence

intervals for heterogeneous treatment effect estimates [3, 37], mak-

ing the statistical analysis of random forests more tractable [4, 7],

and reducing false positives from specification searches [2, 23]. A

fast-growing body of work analyzes the properties of semiparamet-

ric “cross-fitting” estimators, in which high-dimensional nuisance

parameters are estimated by machine learning algorithms on a

subsample of the data, and their out-of-sample predictions used to

estimate the causal parameters of interest [5, 13, 14, 29, 36, 38].

2 EMPIRICAL BAYESIAN SHRINKAGE
For each of NE experiments, we have a test group and a con-

trol group, each made up of NP people.
2
In experiment i , we ob-

serve test and control group participant outcomes, (Y ti,k )
NP
k=1 and

(Y ci,k )
NP
k=1. Within each experiment, test and control outcomes are

iid across people. The treatment effect in experiment i is defined as

θi = E(Y ti,k ) − E(Y ci,k ), and the θi are themselves iid across experi-

ments. We denote by θ̂i the difference of sample means treatment

effect estimator: θ̂i =
1

NP

∑NP
i=k (Y

t
i,k − Y ci,k ) = θi + εi , where εi is

sampling error, assumed independent of θi . We wish to compute

the conditional mean of the treatment effects given the observed

data. Of particular interest is the Bayes estimator E(θi |θ̂i ), which
minimizes mean squared error [31]. We briefly review existing ap-

proaches to this problem under various distributional assumptions

on (θi , εi ).

2.1 Normal Treatments, Normal Errors
Known variances. Consider the case where θi ∼ N (0,σ 2

θ ), Y
c
i,k |

θi ∼ N (0,σ 2

Y ) and Y
t
i,k | θi ∼ N (θi ,σ

2

Y ), for known variances σ 2

θ
and σ 2

Y . The difference of sample means estimator has distribution

2
The assumption that the test and control groups are of equal size is made only to

simplify the exposition, and is inessential in what follows.

θ̂i | θi ∼ N (θi ,σ
2

ε ), where σ 2

ε = 2σ 2

Y /NP . By Bayes’ rule the

posterior distribution of the treatment effect given the data is θi |

θ̂i ∼ N (αθ̂i ,ασ
2

ε ), where α = σ 2

θ /(σ
2

θ + σ
2

ε ). The Bayes estimator

of θi is E(θi | θ̂i ) = αθ̂i . This shrinks the difference of sample

means estimator, θ̂i , towards the prior mean of the treatment effects,

zero, by the coefficient α .3 Thus with normal treatment effects and

sampling error, optimal shrinkage is linear in the estimate θ̂i . The

Bayes risk with squared loss for the difference of sample means θ̂i
is

∑NE
i=1 E(θ̂i − θi )

2 = σ 2

ε NE , whereas for the Bayesian shrinkage

estimator αθ̂i , it is
∑NE
i=1 E(αθ̂i − θi )

2 = ασ 2

ε NE [17]. The gains

from optimal shrinkage are large if the signal-to-noise ratio σ 2

θ /σ
2

ε ,

and hence α , is small. When the sampling error variance σ 2

ε is

very large, almost all of the variation in θ̂i reflects sampling error,

rather than variation in the underlying treatment effect θi , and the

Bayes estimator offsets the effect of sampling error by aggressively

shrinking θ̂i towards the prior mean.

Unknown treatment effect variance. In practice σ 2

θ , and hence

the desired shrinkage factor α , may be unknown. One may specify

a prior distribution over σ 2

θ and conduct full Bayesian inference,

computing the posterior of θi given the data and priors [34, 35].

An alternative is empirical Bayes, in which the shrinkage factor is

estimated from the data. The celebrated James-Stein estimator is

θ̂ J Si =

(
1 −

(NE − 2)σ 2

ε∑NE
i=1 θ̂

2

i

)
θ̂i .

Although originally studied in a frequentist setting with fixed θ ′i s
[26, 32], it can be viewed as an empirical Bayes estimator, where

1 − (NE − 2)σ 2

ε /
∑NE
i=1 θ̂

2

i,2 is an unbiased estimator of the Bayes

optimal shrinkage factor [17, 20, 33].

Unknown sampling error variance or prior mean. In experimental

settings the sampling error variance σ 2

ε is typically unknown, but

can be readily estimated. Letting σ̂ 2

Y denote the sample variance of

all test and control outcomes across all people and experiments, we

use the estimator σ̂ 2

ε = 2σ̂ 2

Y /NP . When the prior mean is non-zero,

the same shrinkage logic as above applies, with estimates being

linearly shrunk towards the prior mean instead of towards zero.

When this prior mean is unknown, it can be estimated as the sample

mean across experiments of the observed θ̂i .

2.2 General Treatments, Normal Errors
The treatment effects θi need not be normally distributed, and

are significantly non-normal in the data we study in Section 5.

This implies that E(θi | θ̂i ) need not be linear in θ̂i , unlike in the

normal case. Let f denote the marginal density of θ̂i . Then Tweedie’s
formula ([10, 16]) for the posterior mean of θi is:

E(θi | θ̂i ) = θi + σ
2

ε
d log f (θ̂i )

dθi
. (1)

Because the θ̂i are observed, unlike the θi , we can directly estimate

the density f from the data, and use this estimate in equation (1)

3
The fact that the Bayes optimal estimator of θi involves shrinking θ̂i towards zero is

consistent with θ̂i being unbiased for θ . The former observation is that E(θi | θ̂i ) ≤
θ̂i ; the latter that E(θ̂i | θi ) = θi .
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to construct an estimator of E(θi | θ̂i ). Even if the treatment effects

are non-normal, normality may still be a reasonable assumption

for the sampling error. If NP is large and the assumptions of the

central limit theorem hold, εi will be close to normal.

3 EXPERIMENT SPLITTING
Experiment splitting takes a different approach to estimating treat-

ment effects. The main observation is that multiple independent

estimates of the same treatment effect can be obtained from a sin-

gle experiment, by simply partitioning the experiment into subex-

periments. In brief, by randomly splitting each experiment into

two subexperiments, we can estimate the conditional mean of the

treatment effect estimate in the second subexperiment given the

treatment effect estimate in the first. This conditional mean is what

is required for optimally shrinking our estimates from the second

subexperiment.

In more detail, we split both the test group and the control group

into two subgroups, with a fraction γ of people selected uniformly

at random for the first subexperiment (up to integer constraints),

and the remainder assigned to the second subexperiment. Without

loss of generality, let (Y ti,k )
⌊γ NP ⌋

k=1 and (Y ci,k )
⌊γ NP ⌋

k=1 be the test and

control outcomes of the people in the first subexperiment, and simi-

larly (Y ti,k )
NP
k= ⌊γ NP ⌋+1

and (Y ci,k )
NP
k= ⌊γ NP ⌋+1

for people in the second

subexperiment. In each subexperiment, we construct the difference

of means treatment effect estimator: θ̂i,1 =
1

⌊γ NP ⌋

∑ ⌊γ NP ⌋

k=1 (Y ti,k −

Y ci,k ) and θ̂i,2 =
1

Np−⌊γ NP ⌋

∑NP
k= ⌊γ NP ⌋+1

(Y ti,k − Y ci,k ). It follows

that E(θ̂i,2 | θ̂i,1) = E(θi | θ̂i,1), as θ̂i,2 equals θi plus a mean

zero error term independent of θ̂i,1. Moreover, E(θ̂i,2 | θ̂i,1), and

hence E(θi | θ̂i,1), can be estimated by standard regression or pre-

diction techniques. This conditional mean is the Bayes estimator

of θi given the data in the first subexperiment. Thus by having

a set of “hold-out” subexperiments, we can estimate the optimal

level of shrinkage. This requires no assumptions on the marginal

distributions of θi or εi , beyond the mild regularity conditions for

estimating a conditional mean.

Experiment splitting yields an estimate of E(θi | θ̂i,1), not E(θi |

θ̂i ). The conditioning is on the difference in means in only the first

subexperiment, not the entire data. In principle not conditioning

on all data might impair estimator performance, to the extent that

more conventional estimators dominate experiment splitting. The

results of Section 5 indicate to the contrary that experiment splitting

estimators can substantially outperform unshrunk, James-Stein and

Tweedie estimators, in real-world A/B tests.

This framework also naturally extends to accommodate covari-

ates. Letting X denote a vector of variables available based on data

from the first subexperiment, we can estimate E(θ̂i,2 | Xi ). In con-

trast to conventional experiment meta-analysis, Xi includes an
estimate of the outcome of interest formed from the data in ex-

periment i , θ̂i,1. In addition, the covariate vector Xi may include

treatment effects on other metrics in the same experiment, or exper-

imental metadata, all of which may be useful for predicting θi . Thus
the experiment splitting estimator’s performance may be improved,

if auxiliary metrics or experiment metadata are available that are

predictive of the outcome of interest. The conditional expectation

can be estimated by standard prediction algorithms like the lasso,

gradient boosted decision trees, or neural nets. Thus experiment

splitting allows us to treat nonparametric multivariate shrinkage

as a simple prediction problem. Unlike classical approaches to the

problem of multivariate shrinkage (e.g. [21]), it is unnecessary to

estimate the full covariance matrix of all metrics’ treatment effects.
4

The covariate vector may even be high-dimensional, as this can be

accommodated by common supervised learning algorithms.

Generating confidence intervals around the estimate of E(θi | Xi )
poses no special difficulty for the experiment splitting estimator.

The only requirement is that valid confidence intervals can be cal-

culated for whatever statistical procedure is applied for estimating

the conditional mean.

3.1 Selecting the Experiment Splitting Fraction
Because of the relation between experiment splitting and cross-

validation described in Section 3.4, we also call the first subexperi-

ment (used to construct the covariates in the experiment splitting

regression) the “training” subexperiment, and the second subex-

periment (used to construct the outcomes) the “validation” subex-

periment. The relative amount of data in training and validation

subexperiments affects the properties of the experiment splitting

estimator. If most of the data is assigned to the training subexperi-

ment, then the sampling error in θ̂i,1 is relatively small; if most of

the data is assigned to the validation subexperiment, then the sam-

pling error in θ̂i,2 is relatively small. The optimal splitting fraction

strikes a balance so that Ê(θi | θ̂i,1), the estimator of the conditional

mean E(θi | θ̂i,1), is as close as possible on average to θi .
We present two strategies for estimating the out-of-sample error

rate for selecting the optimal experiment splitting fraction. The first

is cross-validation. This requires splitting the original experiment

into three: two subexperiments corresponding to the training and

validation data, and a third, “test” subexperiment, which is used as

a out-of-sample, independent measure of the truth. The difference

between a model’s predictions—which are a function of the training

and validation data—and the estimates of the true effect from the

test data, can be used to estimate the model’s performance. We

perform the random assignment of data into training, validation

and tests sets S > 1 times and average the results, to reduce the

variance in the estimated performance metric due to the choice of

splits. This entire procedure can be performed for various choices of

γ (which determines the relative sizes of the training and validation

subexperiments), and the γ yielding the lowest prediction error

can be selected. Algorithm 1 summarizes this procedure, given

γ ∈ {γ1,γ2 . . . ,γG }, and with half of the overall data allocated to

the test subexperiment.

The second strategy for selecting the experiment splitting frac-

tion involves minimizing an unbiased risk estimate. This is anal-

ogous to covariance penalty approaches to estimating prediction

error, including Mallows’ Cp [28], the Akaike Information Crite-

rion (AIC) [1], and Stein’s unbiased risk estimate [34]. Unlike cross-

validation, the unbiased risk estimate we develop applies only to

multivariate OLS shrinkage, but does not require holding out a test

4
In addition [21] assume that the metrics’ sampling error is independent across metrics

and homoskedastic. These assumptions—especially independence across metrics—are

hard to justify in typical A/B tests.
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Algorithm 1 Cross-Validation for Optimal Splitting

(1) For splitting fraction indices д = 1 to G:
(a) For splitting simulations s = 1 to S :

(i) For experiments i = 1 to NE , randomly split experiment

i into the training, validation and test subexperiments,

each with a proportion 0.5γд , 0.5(1 − γд) and 0.5 of the

data, respectively.

(ii) Apply the experiment splitting estimator to the training

and validation subexperiments, and obtain predictions

of the true effect in each experiment.

(iii) Calculate the mean squared difference between these

predictions and the estimated effects in the test subex-

periment. Denote this errдs .

(b) Calculate the mean squared prediction error over splitting

simulations s , MSPEд B
1

S
∑S
s=1 errдs .

(2) Return γд∗ , where д
∗ ∈ argminд MSPEд .

subexperiment, is computationally simpler, and yields insight into

how the optimal splitting fraction depends on sample sizes and

variance parameters. Given a vector of experiment covariates Xi
of length l , the treatment effect estimator for experiment i is X ′

i β̂ ,

where β̂ = argminβ
∑
i (θ̂i,2−X

′
i β̂)

2
. The unshrunk subexperiment

treatment effect estimates are written as θ̂i, j = θi + εi, j , for j = 1, 2.

We assume that the error εi, j is independent across i and j , and that

εi,2 is independent ofXi . Let σ
2

εj denote the variance of εi, j . We also

assume that the NE × l regressor matrix X = (X1,X2, . . . ,XNE )
′

has rank l with probability 1. The following proposition forms the

basis of our unbiased risk estimator. All proofs are in the appendix.

Proposition 1. The mean squared error of the multivariate linear
shrinkage estimators (X ′

i β̂)
NE
i=1 is

NE∑
i=1

E(θi − X ′
i β̂)

2 =

(NE∑
i=1

E(θ̂i,2 − X ′
i β̂)

2

)
− (NE − 2l)σ 2

ε2 .

Proposition 1 shows that to estimate risk, we simply adjust the

sum of squared residuals by a term which depends on NE , the

number of experiments, and l , the number of regressors. As l in-
creases, the in-sample model fit, measured by the sum of squared

residuals, increasingly understates the true error. Let σ̂ 2

ε2 denote

an unbiased estimator of σ 2

ε2 , which can be easily calculated from

the individual-level outcomes in the second subexperiment. Then(∑NE
i=1(θ̂i,2 − X ′

i β̂)
2

)
− (NE − 2l)σ̂ 2

ε2 is unbiased for the risk of the

experiment splitting estimator. This risk estimate can be calculated

for different experiment splitting fractions, in order to select the

estimated risk-minimizing fraction.

3.2 Determinants of the Optimal Split
In the case of univariate OLS, we regress the estimated treatment

effect in the validation subexperiment on a constant and the esti-

mated treatment effect in the training subexperiment. Our shrink-

age estimator for experiment i is β̂0 + β̂1θ̂i,1, where (β̂0, β̂1) =

argminβ0,β1
∑
i (θ̂i,2 − β0 − β1θ̂i,1)

2
. With relatively more data in

the training subexperiment, the variance of θ̂i,1 decreases. But little

data in the validation subexperiment means that the θ̂i,2 are impre-

cisely estimated, increasing the variance of (β̂0, β̂1). We show how

the optimal splitting fraction that balances these two effects de-

pends on the number of experiments, and the variance of treatment

effects and sampling error. The following result gives an explicit

expression for risk of univariate OLS shrinkage in terms of the

sample size and variance parameters.

Corollary 1. The mean squared error of the univariate linear
shrinkage estimators (β̂0 + β̂1θ̂i,1)

NE
i=1 is

NE∑
i=1

E(θi − β̂0 − β̂1θ̂i,1)
2 =

(NE − 2)σ 2

θσ
2

ε1

σ 2

θ + σ
2

ε1
+ σ 2

ε2 .

The next result derives the limiting behavior of the optimal split.

For simplicity we treat the sample sizes and the experiment splitting

fraction as real-valued variables, so the necessary derivatives are

defined. We require 0 < γ ≤ γ ≤ γ < 1 for some γ and γ close to

zero and one, so that no subexperiment has zero observations.

Proposition 2. Assume Var (Y ti |θi ) = Var (Y ci |θi ) = σ 2

Y for

all experiments i , and NE ≥ 3. Define σ 2

ε =
2σ 2

Y
NP

, and let γ ∗ ∈

[γ ,γ ] minimize mean squared error from univariate linear shrink-
age. Then limNE→∞ γ ∗ = γ , limσ 2

θ→0
γ ∗ = limσ 2

ε→∞ γ ∗ = γ , and

limσ 2

θ→∞ γ ∗ = limσ 2

ε→0
γ ∗ =

√
NE−2

1+
√
NE−2

.

Of particular note is the limiting behavior of γ ∗ as NE grows.

The optimal split puts increasingly more data in the training subex-

periment, as any noise in the dependent variable of the splitting

regression can be compensated for with a sufficiently large number

of experiments NE . Figure 1 shows the mean squared error from

univariate linear shrinkage, for varying values of σ 2

θ and NE , for

σ 2

ε fixed at 1, and normal treatment effects and sampling errors.

Consistent with Proposition 2, the optimal γ is increasing in σ 2

θ and

NE . The figure illustrates the asymmetry in risk caused by very

small vs. very large values of γ . As γ approaches 0, the signal in θ̂i,1
vanishes, β̂1 approaches 0, and experiment splitting approaches the

bounded risk of the complete shrinkage case. As γ approaches 1,

risk is unbounded: extreme imprecision in the dependent variable

can cause extreme errors in the shrinkage estimator.

When σ 2

θ = 0.1 and NE = 100, there is no interior solution for

γ ∗, and risk is strictly increasing in γ . This implies that experiment

splitting is futile if the signal-to-noise ratio is too small. For large

enough sampling error variance, complete shrinkage—the limiting

case as γ approaches 0—is always superior to experiment splitting.

The suboptimality involved in performing experiment splitting

nonetheless is small, however, even for moderate values of γ .
Figure 2 shows γ ∗, the optimal fraction of data to allocate to the

training subexperiment, as a function of the variance of treatment

effects, σ 2

θ , and the number of experiments, NE . The sampling

error σ 2

ε is again fixed at one. With NE between 100 and 200 and a

signal-to-noise ratio between around one and three, the training

subexperiment should contain about 80% to 90% of the data.
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Figure 1: Experiment Splitting Fractions and RMSE

Figure 2: Optimal Experiment Splitting Fraction

3.3 Repeated Experiment Splitting
Our focus until now has been on generating predictions from

datasets in which each experiment is split once.5 An alternative is

repeated splitting, where we randomly split each experiment into

training and validation subexperiments R > 1 times. This is appeal-

ing, as averaging over repeated splits reduces the “excess” variance

due to the random choice of user assignments to subexperiments.

This averaging can be understood as a form of Rao-Blackwellization.

The experiment splitting estimator is a function of the training and

validation assignment, and the individual-level data. Conditioning

5
This is true even in the cross-validation procedure of Algorithm 1: the additional

split there is used to evaluate the quality of the model predictions, not to generate the

predictions themselves.

Algorithm 2 Repeated Experiment Splitting

(1) For experiment splitting repetitions r = 1 to R:
(a) For i = 1 to NE , randomly split experiment i into two

subexperiments, with a fraction γ of data in the training

subexperiment and 1 − γ in the validation subexperiment.

Let θ̂
(r )
i,1 and θ̂

(r )
i,2 denote the unshrunk estimated treatment

effects in those subexperiments.

(b) Given the set of NE pairs

(
θ̂
(r )
i,1 , θ̂

(r )
i,2

)NE

i=1
, estimate the con-

ditional mean E
(
θ̂
(r )
i,2 | θ̂

(r )
i,1

)
. Denote this estimator by

m̂(r )(·).

(c) For i = 1 to NE , compute the shrinkage estimates s
(r )
i,1 B

m̂(r )
(
θ̂
(r )
i,1

)
.

(2) For i = 1 to NE , return the repeated experiment splitting

shrinkage estimator for experiment i , given by
1

R
∑R
r=1 s

(r )
i,1 .

on the individual-level data—a sufficient statistic—by averaging pos-

sible training and validation splits will improve the mean-squared

error of the experiment splitting estimator. In the empirical results

of Section 5, we verify that this is indeed the case.

Algorithm 2 describes the repeated experiment splitting algo-

rithm. The case of R = 1 reduces to the original, single repetition

experiment splitting estimator. The validity of this procedure for

R > 1 follows immediately from the validity of the R = 1 case. The

conditional mean E
(
θ̂
(r )
i,2 | θ̂

(r )
i,1

)
does not depend on the repetition

r , since the data is identically distributed across repetitions. Denote
this conditional mean function bym(·). For each repetition r , as

long as our estimator m̂(r )(·) is consistent for m(·), the average

of these estimators over r will also be consistent. If the estimates

m̂(r )(·)were independent across r , setting the number of repetitions

R to be sufficiently high would ensure arbitrarily precise estimates

ofm. In practice the m̂(r )(·) are correlated as they are all functions

of the same dataset, and this will not be the case.

For cross-validation of the splitting fraction, we nest this algo-

rithm in the cross-validation meta-algorithm, Algorithm 1. The

inner loop of Algorithm 1 calls for applying an experiment splitting

estimator given a splitting fraction γд . In this setting, implementing

that step itself requires splitting the data R times.

3.4 Connection with Cross-Validation
Experiment splitting may appear similar to the practice of cross-

validating predictive models. The researcher splits experiments

and estimates the optimal degree of shrinkage, based on predicting

outcomes in the “held-out” subexperiments. Similarly, in cross-

validation, the researcher splits data and estimates the optimal

degree of regularization based on predicted outcomes in the held-

out data. This is more than an analogy. Experiment splitting with

univariate OLS shrinkage and a prior treatment effects mean of zero

is equivalent to cross-validation of a particular ridge regression.

This connection holds for any fixed splitting fraction γ , and is

unrelated to the use of cross-validation for selecting the splitting

fraction as described in Section 3.1.
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In experiment splitting with a prior treatment effect mean of zero,

the univariate linear regression problem is minβ
∑
i (θ̂i,2 − βθ̂i,1)

2
.

Define ∆i,k = Y ti,k − Y ci,k . That is, we arbitrarily pair up test and

control participants into NP pairs, and denote each pair’s difference

in outcomes by ∆i,k . Note that E(∆i,k ) = θi for all i . Regress ∆i,k
on NE indicator variables, one corresponding to each experiment,

on the sample of people in the first subexperiment:

∆i,k =

NE∑
j=1

α j I(i = j) + ϵi,k ,

for i = 1, 2, . . . ,NE and k = 1, 2, . . . ⌊γNP ⌋. Let α̂OLS, j denote

the OLS estimates of the α j . Each α̂OLS, j will simply be the av-

erage of the dependent variable for observations corresponding

to that experiment, and so we recover the difference in sample

means estimator: α̂OLS, j = θ̂ j,1 for all experiments j. Letting
α = (α1,α2, . . . ,αNE )

′
, the ridge regression problem for a given

regularization parameter λ is

min

α

©­«∆i,k −

NE∑
j=1

α j I(i = j)
ª®¬
2

+ λα ′α

 . (2)

Denoting the designmatrix for this problem byX and the dependent

variable by y, the solution is α̂Ridдe = (X ′X + λI )−1X ′y. Since X

is orthogonal, this implies α̂Ridдe, j =
⌊γ NP ⌋

⌊γ NP ⌋+λ
θ̂ j,1 for all j. Thus

ridge regression shrinks all the raw estimates to zero by the same

relative amount, where the shrinkage factor depends on λ.
Choosing λ by cross-validation, i.e. minimizing out-of-sample

squared error in predictions on the data from the second subexper-

iments, amounts to solving:

min

λ

NE∑
i=1

NP∑
k= ⌊γ NP ⌋+1

(
∆i,k −

⌊γNP ⌋

⌊γNP ⌋ + λ
θ̂i,1

)
2

.

Because θ̂i,2 =
1

NP−⌊γ NP ⌋

∑NP
k= ⌊γ NP ⌋+1

∆i,k , this is equivalent to

min

λ

NE∑
i=1

(
θ̂i,2 −

⌊γNP ⌋

⌊γNP ⌋ + λ
θ̂i,1

)
2

,

which in turn is equivalent to the original experiment splitting prob-

lem, minβ
∑NE
i=1(θ̂i,2 − βθ̂i,1)

2
. It follows that the experiment split-

ting gives the same estimators as cross-validated ridge regression.

Similarly, the repeated experiment splitting procedure described

in Algorithm 2 is equivalent to a variant of k-fold cross-validation,

where for each fold, each experiment is randomly split into train-

ing and validation datasets. This connection motivates the naming

convention of calling the first subexperiment the training subex-

periment and the second the validation subexperiment, as equation

(2) is estimated on the first dataset, and its tuning parameter λ is

chosen by cross-validation against the second dataset.

Section 2.1 notes that with normal sampling error and treatment

effects, the optimal shrinkage is linear. The Bayesian interpretation

of ridge regression makes the same assumptions of normality on

the treatment effects and the sampling error, so it is natural that it

also implies linear shrinkage. Other penalties on the α parameter in

equation (2) correspond to non-normal priors on treatment effects,

and hence to fitting different, nonlinear regression models in the

experiment splitting problem. The L1 lasso penalty, for example, is

equivalent to solving the experiment splitting problemwith the soft-

thresholding operator minα
∑NE
i=1

(
θ̂i,2 − sign(θ̂i,1)(|θ̂i,1 | − α)+

)
2

(see [24] for discussion of the relation between the lasso and the

soft-thresholding operator).

Relative to the experiment-level regression of θ̂i,2 on θ̂i,1, the
individual-level regression in equation (2) requires specifying the

form of regularization term (and implicitly, the prior distribution

of treatment effects). Inappropriate choices of regularization could

lead to suboptimal forms of shrinkage. The L2 penalty in ridge

regression, implying linear shrinkage, may be inappropriate when

the distribution of treatment effects is highly non-normal. The

experiment-level regression of θ̂i,2 on θ̂i,1 requires no such as-

sumptions, and will asymptotically recover the optimal shrinkage

with any consistent nonparametric regression technique.

4 EXTENSIONS
4.1 Shrinkage Across Subgroups
Our focus has been on experiment splitting regressions where each

data point in the regression corresponds to a separate experiment.

We may also wish to perform shrinkage across non-overlapping

subgroups of people within an experiment, either instead of, or in

addition to, shrinkage across experiments. The experiment splitting

methodology extends directly to this setting: instead of i indexing
experiments, let i index subgroups (or subgroup by experiment

pairs), and the same methodology applies without modification.

Subgroup metrics which may be correlated with the magnitude

of treatment effects or their sampling error variance, including

demographics and subgroup size, are natural covariates to include

in the experiment splitting regression.

4.2 Predicting Using Pooled Estimates
A variation on experiment splitting is to estimate E(θi | θ̂i,1) as
usual, but to generate predictions of θi by evaluating this condi-

tional mean estimate m̂ at the pooled estimate θ̂i , instead of the

subexperiment estimate θ̂i,1. Intuitively, evaluating m̂ at an esti-

mator with the same mean and a lower variance should improve

performance. We find this indeed results in a non-trivial decrease in

prediction error in our data, but only if repeated experiment split-

ting is not already being used. A heuristic explanation can be given

in the case of univariate OLS experiment splitting. For simplicity of

exposition we assume the prior mean of θi to be zero. LetD denote

all experimental data, and A the random assignments of people

to subexperiments. Conditional on the data and averaging over

repeated splits, the prediction from repeated experiment splitting

as described in Algorithm 2 is EA (β̂1θ̂i,1 | D) +O(1/R). The aver-
age prediction from repeated experiment splitting, evaluating the

estimated conditional mean at the pooled mean θ̂i , is EA (β̂1 | D)θ̂i .
Under standard regularity conditions, for any fixed experiment i ,

EA (β̂1θ̂i,1 | D) = EA (β̂1 | D)EA (θ̂i,1 | D) + O(1/NE ), as the

influence any single experiment has on the estimated regression pa-

rameter β̂1 isO(1/NE ). But EA (θ̂i,1 | D) = θ̂i , so with repeated ex-

periment splitting, the difference between predictions using pooled
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estimates and predictions using subexperiment estimates must be

of order O(1/R) +O(1/NE ).

It may appear that the reason for this lack of performance im-

provement is that the function m̂, designed as it is for optimally

shrinking the subexperiment estimate θ̂i,1, results in “overshrink-

ing” the more accurate, pooled estimate θ̂i . A feasible procedure for

transforming an estimate of E(θi | θ̂i,1) into an estimate of E(θi | θ̂i )
would help avoid this issue. One could estimate the former function

by experiment splitting, transform it to an estimate of the latter

function, and evaluate the latter function at the pooled estimate,

θ̂i . It appears that performing this transformation in the general,

multi-metric, non-normal case would effectively require estimating

the full joint distribution of treatment effects and sampling error.
6

This would void the benefits that shrinkage via experiment splitting

has in simplicity and ease of implementation, so we do not pursue

this extension here.

5 EMPIRICAL RESULTS
5.1 Data
We study a set of 226 Facebook News Feed A/B tests conducted in

2018.
7
Each A/B test caused a change in the order in which stories

appear in News Feed, with the goal of showing users more relevant

content first. We analyze a single day’s worth of data from each test.

The outcome metric we study is the percentage change in posts

per person to News Feed in the test group relative to the control

group. In addition, for each test we track the percentage change

in 23 auxiliary metrics, including likes, comments and link clicks.

These will be used as covariates in our regressions, allowing us to

make more precise inferences about the percentage change in posts

per person. People in each test are randomly assigned with equal

probability to the test and control groups. The sample size in each

test varies between 10.0 and 10.9 million people.
8

Figure 3 shows the distributions across experiments of the per-

centage change in posts, and its standard error. We calculate stan-

dard errors using the delta method. The percentage change in posts

is non-normal: the Shapiro-Wilk test rejects the null hypothesis of

normality with a p-value below 0.01%. This remains true after re-

moving the experiments with a greater than 2% change in absolute

value. This suggests that linear shrinkage, as implied by normal

treatment effects and normal sampling error (and hence normal

observed outcomes), is likely suboptimal.

Figure 4 shows the scatterplot of the percentage change in posts,

for the training and validation subexperiments. There are two sets

of points. The first is for γ = 0.2 (a 20%-80% split of data into

training and validation sets), and the second is for γ = 0.8. For

each set of points, we plot the OLS line of best fit. The dashed gray

line is the 45-degree line. For large NE , the OLS slope coefficient is

approximately Cov(θ̂i,2, θ̂i,1)/Var (θ̂i,1) = σ 2

θ /(σ
2

θ + σ
2

ε1 ), which is

6
The special case of a single metric with normal treatment effects and sampling

error is straightforward. With a fraction γ of data in the training subexperiment, if

E(θi | θ̂i,1) = β1θ̂i,1 , then it can be shown that E(θi | θ̂i ) =
β
1

λ(1−β
1
)+β

1

θ̂i .
7
This is a convenience sample, and is not intended to give a representative picture of

the effects of News Feed tests generally.

8
Estimates from smaller experiments should be shrunk more than estimates from

larger experiments, all else equal. In practice the variation in sample sizes in this

dataset is relatively small, and the gains from including sample size as an additional

covariate in our predictive models were minimal.

Figure 3: Distributions of Estimates and Standard Errors

Figure 4: Percentage Change in Posts, γ = 0.2, 0.8

decreasing in σ 2

ε1 and less than one.
9
Consistent with this, in Figure

4, increasing γ from 0.2 to 0.8 increases the slope of the line of best

fit, but the slope remains less than than one.

5.2 Estimators
The estimators we consider fall into two classes. The first are the

experiment splitting estimators, which fit predictive models for

the percentage change in posts in the validation subexperiments,

given the data from the training subexperiments. The second are

the pooling estimators, which combine the data from the training

and validation experiments. In either case we measure estimator

performance by calculating the squared distance between estimator

predictions and the percentage change in posts in the test subex-

periments, on average across all experiments, as in Algorithm 1.

9
If γ = 0.5, the training and validation datasets have the same distributions, and it

might be supposed that, by symmetry, the line of best fit through the scatterplot must

have a slope of approximately one. This intuition is incorrect, as the formula for the

slope coefficient shows.
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Experiment Splitting Estimators. The experiment splitting esti-

mators all predict the percentage change in posts for the validation

subexperiments. The estimators differ in the prediction algorithm

used, and the covariates included. The covariates are either the

percentage change in posts for the training subexperiments, or the

percentage changes in all metrics in the training subexperiments.

The predicted values from the estimated models provide the esti-

mated treatment effect for each experiment. We study the following

experiment splitting estimators.
10

• Univariate OLS: Linear regression on a constant and the

percentage change in posts in the training subexperiments.

• Univariate Loess: Locally quadratic regression, using the

same regressors as univariate OLS.

• Multivariate OLS: Linear regression, using the percentage

change in all metrics (posts, and all 23 auxiliary metrics) in

the training subexperiments as predictors.

• Lasso: Lasso, using the same predictors as multivariate OLS.

In addition, we study the repeated experiment splitting versions

of the above estimators, with R, the number of times the training

and validation data is repeatedly split, equal to 10. Larger values of

R result in only minimal improvements in estimator performance.

The tuning parameters required for the loess and lasso models are

selected by experiment-level cross-validation on the union of the

training and validation data.

Pooling Estimators. The pooling estimators combine training

and validation data. Unlike experiment splitting, which uses the

validation observations to construct the outcomes and the training

observations to construct the predictors, the pooling estimators

make no distinction in which sample an observation is from.

• Unshrunk: The percentage change in posts in the combined

training and validation test group, relative to the combined

training and validation control group.

• James-Stein: The James-Stein type method of moments es-

timator described in [9], which allows for heteroskedastic

sampling error.

• Tweedie: The nonparametric estimator based on equation (1),

using Lindsey’s method to estimate the density, as in [16].

Figure 5 plots the unshrunk treatment effect estimates against the

unshrunk, James-Stein, lasso without repeated splits, and lasso with

repeated splits estimators. The splitting estimators are calculated

with γ = 0.2. By construction, the unshrunk points lie on the

45-degree line. The other estimators tend to shrink the unshrunk

estimates towards the overall mean, but do so in different ways.

James-Stein is an almost linear function of the unshrunk estimates,

with a slope of less than one.
11

The lasso estimators are not smooth

functions of the unshrunk estimator, reflecting the influence of

auxiliary metrics. They sometimes shrink more and sometimes less

than the James-Stein estimates, but on average both have larger

variance than James-Stein.

Figure 6 shows the prediction errors for the basic experiment

splitting estimators, and Figure 7 shows the prediction errors for

the experiment splitting estimators with averaging over repeated

10
Random forests and gradient boosted decision trees perform worse than multivariate

OLS and lasso, and are omitted from the results.

11
The James-Stein estimates are not exactly linear in the unshrunk estimates, because

of the adjustment for heteroskedasticity, as in [9].

Figure 5: Unshrunk vs. Other Estimators, γ = 0.2

Figure 6: Pooled and Single Split Estimators, Error

splits. Both figures also show the three pooling estimators. The

prediction errors are calculated as in Algorithm 1, with the number

of splitting simulations S set to 100. The unshrunk estimator per-

forms quite poorly. James-Stein shrinkage reduces mean squared

prediction error (MSPE) by 32% relative to the unshrunk case. The

non-normal distribution of effect sizes in Figure 3 suggests that

Tweedie’s estimator, which can adapt to a non-normal distribution

of the truth, θi , should outperform James-Stein. This is indeed the

case, with Tweedie having a 6% lower MSPE than James-Stein.

The unaveraged estimators, with the exception of univariate OLS,

all perform better than James-Stein for an appropriately chosen

value of γ . Of particular note are the multivariate models, multivari-

ate OLS and lasso. One might expect the comovements in auxiliary

metrics to be informative: intuitively, if a experiment shows a large

movement on the metric of interest, but not on auxiliary metrics

which tend to covary with the metric of interest, we might infer that
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Figure 7: Pooled and Repeated Split Estimators, Error

Table 1: Relative MSPE and Standard Errors, γ = 0.24

Estimator Relative MSPE Std. Error

Unshrunk 1.000 0.009

James-Stein 0.680 0.006

Tweedie 0.640 0.006

Univariate OLS 0.739 0.006

Univariate OLS, Avg. 0.717 0.006

Univariate Loess 0.682 0.006

Univariate Loess, Avg. 0.638 0.006

Multivariate OLS 0.603 0.006

Multivariate OLS, Avg. 0.562 0.005

Lasso 0.570 0.005

Lasso, Avg. 0.556 0.005

the large movement is likely a false positive due to sampling error.

Indeed, the multivariate OLS and lasso estimators perform well.

At their optimal splitting fractions they improve on the unshrunk

estimator by 40% and 43%, and on Tweedie by 7% and 11%. This

implies that our inferences about changes in posts can be much

improved by taking into account how other metrics have changed,

because of the correlation between the true treatment effects for

posts and for other metrics. Thus experimental analyses which

analyze one metric in isolation, without taking into account the

comovements in other, related metrics may be quite suboptimal.

The MSPEs of the estimators which average over repeated splits

are uniformly lower than their unaveraged counterparts. Repeated

splitting reduces the minimum MSPE of multivariate OLS and lasso

by 7% and 2%. The best performing estimator is the lasso averaged

over repeated splits. It improves on the unshrunk estimator’s MSPE

by 44%, on James-Stein by 18%, and on Tweedie by 13%, and its

minimumMSPE is reached atγ = 0.24. Table 1 shows all estimators’

MSPE relative to the unshrunk estimator at γ = 0.24, along with

standard errors summarizing statistical uncertainty caused by the

finite number of splitting simulations, S = 100.

Table 2: Cumulative Treatment Effects, γ = 0.24

Estimator Top 1% Top 5% Top 10% All Positive

Unshrunk 0.81% 2.63% 4.36% 11.20%

Lasso, Avg. 2.34% 6.27% 6.83% 15.66%

Figure 6 also shows that choosing precisely the right γ for the

multivariate repeated experiment splitting estimators is not neces-

sary in order to obtain large performance improvements relative to

the pooling estimators. This is especially true for the repeated lasso

splitting estimator, as both averaging and the regularization of the

lasso penalty have the effect of reducing the sensitivity of MSPE to

the splitting fraction, γ . The repeated splitting lasso estimator has

a roughly constant error for γ ∈ [0.05, 0.75]. By contrast the perfor-

mance of the univariate OLS and loess estimators are considerably

more sensitive with respect to γ , and their optimal γ is larger.

Some distinctive patterns in Figures 6 and 7 are the relatively

flat MSPE curves for the lasso, and the observation that repeated

splitting does not much decrease the lasso’s minimal RMPSE. These

features are consistent with a data generating process in which

lifts in the most important covariates are precisely estimated, for

any reasonable sample size. This implies that for γ above a small

threshold, those covariate values will change little. If the error in

the outcome variable is not too large (γ is not too close to one), the

lasso gives high quality predictions, which will vary little both as a

function of γ , and across repeated experiment splits. Of course in

other applications the data generating process may not have these

characteristics, and there is no reason to expect these particular

patterns to hold generally.

The purpose of A/B tests is typically to identify and launch the

best performing treatments. Consequently MSPE may not be the

most relevant evaluation criterion for practitioners. Instead, the

key desideratum for an estimator may be whether the experiments

it ranks highest do indeed have relatively large treatment effects.

We can assess this by selecting the most promising experiments, as

ranked by a given estimator, and evaluating their performance on

the out-of-sample, test subexperiments. Table 2 shows that repeated

lasso, the best performing estimator by MSPE, also performs well

according to this criterion. The top 10% of experiments, as ranked

by the unshrunk estimator, have a cumulative treatment effect

of 4.36%.
12

The corresponding figure for the lasso is 57% higher,

at 6.83%. The relative difference between the lasso and unshrunk

estimators are even more pronounced in the far right tail, as the

columns for the top 5% and top 1% of experiments show. Launching

all estimates with a positive estimated treatment effect gives an

estimated cumulative lift of 11.20% for the unshrunk estimator,

while the figure for the lasso is 40% higher, at 15.66%.
13

Proposition 1 allows us to estimate the mean squared error of

the multivariate OLS experiment splitting estimator as a function

of γ . This can be compared to the prediction error of multivariate

OLS as computed by the cross-validation procedure of Algorithm

12
The James-Stein estimator performs very similarly to the unshrunk estimator, as it

results in almost the same ordering of experiments.

13
The repeated lasso outperforms all other experiment splitting estimates according

to all criteria in Table 2 except "Top 10%", where it is second to repeated multivariate

OLS, which has a marginally higher cumulative treatment effect of 6.84%.
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Figure 8: Multivariate OLS Error Estimates

1. Figure 8 shows the results. The latter is larger than the former

for all γ , as it measures mean squared prediction error relative to

the estimated effects in the test subexperiments, rather than mean

squared error relative to the truth. However, Figure 8 indicates

that estimating the optimal γ according to Proposition 1 will give

comparable performance to the optimal γ as obtained from the

much more computationally costly cross-validation procedure.

6 CONCLUSION
Inference on a particular metric and experiment can generally be

improved by borrowing strength both across other experiments

and other metrics. Experiment splitting provides a easily imple-

mentable methodology for realizing these performance gains, by

transforming the problem of developing an appropriate shrink-

age estimator into a simple prediction problem. In our sample of

Facebook News Feed A/B tests, experiment splitting outperforms

unshrunk estimators and conventional shrinkage estimators, espe-

cially after incorporating information from comovements in other

metrics related to the outcome of interest. While our focus has been

on average treatment effects in the context of experimentation,

analogous “shrinkage via sample splitting” techniques are likely

to be useful in causal inference more generally, with potential ap-

plications to estimating quantile treatment effects, local average

treatment effects given instrumental variables, and average treat-

ment effects under unconfoundedness.
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APPENDIX
Proof of Proposition 1.
We have

∑NE
i=1 E(θi − X ′

i β̂)
2 = NEσ

2

ε2 +
∑NE
i=1 E(θ̂i,2 − X ′

i β̂)
2 −

2

∑NE
i=1 E

(
εi,2(θ̂i,2 − X ′

i β̂)
)
. Collect the θ̂i,2 and εi,2 observations

across experiments i into the NE -vectors θ̂2 and ε2. Define the

matrixM = I − X (X ′X )−1X ′
, with elementsmi j . Then

E

NE∑
i=1

εi,2(θ̂i,2 − X ′
i β̂) = E(ε ′

2
Mθ̂2)

= E


∑
i

∑
j
mi jεi,2θ̂ j,2


= E

E ©­«
∑
i

∑
j
mi jεi,2θ̂ j,2 | M

ª®¬


= E

{
E

(∑
i
miiεi,2θ̂i,2 | M

)}
= E

{∑
i
miiσ

2

ε2

}
= σ 2

ε2E(tr(M))

= (NE − l)σ 2

ε2 .

Hence

∑NE
i=1 E(θi − X ′

i β̂)
2 =

(∑NE
i=1 E(θ̂i,2 − X ′

i β̂)
2

)
− (NE − 2l)σ 2

ε2 ,

as required.

Proof of Corollary 1.
From standard results on the relation between the variance of re-

gression residuals and the variance of regression errors (e.g. [25]),

we have

NE∑
i=1

E(θ̂i,2 − β̂0 − β̂1θ̂i,1)
2 = (NE − 2)E(θ̂i,2 − β0 − β1θ̂i,1)

2.

Further,

E(θ̂i,2 − β0 − β1θ̂i,1)
2 =

(
Var (θ̂i,2) −

Cov2(θ̂i,2, θ̂i,1)

Var (θ̂i,1)

)
=

(
σ 2

θ + σ
2

ε2 −
σ 4

θ

σ 2

θ + σ
2

ε1

)
, (3)

where first equality follows because β1 =
Cov(θ̂i,2, θ̂i,1)
Var (θ̂i,1)

, and the

second from independence of sampling errors and treatment effects.

Combining equation (3) and Proposition 1 gives the result.

Proof of Proposition 2.
With a fraction γ of data in the training subexperiment, and 1 − γ
in the validation subexperiment, σ 2

ε1 = σ 2

ε /γ and σ 2

ε2 = σ 2

ε /(1 − γ ).
Define the function h as

h(γ ,σ 2

ε ,σ
2

θ ,NE ) =
(NE − 2)σ 2

θσ
2

ε /γ

σ 2

θ + σ
2

ε /γ
+

σ 2

ε
(1 − γ )

.
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By Corollary 1, the problem of minimizing the mean squared

error is minγ ∈[γ ,γ ] h(γ ,σ
2

ε ,σ
2

θ ,NE ). Some calculations show

∂h

∂γ
= σ 2

ε

(
1

(1 − γ )2
−

(NE − 2)σ 4

θ

(σ 2

ε + γσ
2

θ )
2

)
, (4)

∂2h

∂γ 2
= 2σ 2

ε
©­­«
(NE − 2)σ 6

θ(
σ 2

ε + γσ
2

θ

)
3
+

1

1 − γ 3

ª®®¬ . (5)

From equation (5),
∂2h
∂γ 2
> 0. By convexity of h in γ , if ∂h

∂γ

���
γ=γ
<

0 then γ ∗ = γ , and if
∂h
∂γ

���
γ=γ

> 0 then γ ∗ = γ . Otherwise γ ∗

solves the first-order condition
∂h
∂γ

���
γ=γ ∗

= 0. The limiting behavior

of γ ∗ follows from these observations and equation (4). For all

sufficiently large NE ,
∂h
∂γ

���
γ=γ
< 0 and therefore limNE→∞ γ ∗ = γ .

The arguments for limits with respect to σ 2

θ and σ 2

ε are similar.
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