
Securing Authentication Within Hadoop
Michael Kanyeba and Lasheng Yu*

School of Information Science and Engineering, Central South University, Changsha, Hunan, P.R. China
*Corresponding author

Abstract—In this paper, we discuss authentication issues for
Hadoop security in a cloud environment. The main focus is on
security issues that are associated with authentication in Hadoop
which is framework for storing data on large clusters of
commodity hardware — everyday computer hardware that is
affordable and easily available — and running applications
against that data* We also discuss various possible solutions to
those issues in hadoop security and authentication. Hadoop
security is developing at a rapid pace which includes computer
security, network security, information security, and data privacy.
As the amount of enterprise-critical data that resides in the
cluster increases, the need for securing access becomes just as
critical. Hadoop was not built with security to begin with.
Although, cloud computing, big data and its applications,
advantages are likely to represent the most promising new
frontiers in science. Then it appears essential to get know Hadoop
in term of security.

Keywords-component; kerberos; hadoop; mapreduce; HDFS

I. INTRODUCTION
Hadoop may have started in laboratories with some really

smart people using it to analyse data for behavioural purposes;
but it is increasingly finding support today in the corporate
world. Indeed more and more companies are realizing the
benefits it offers for managing and processing very large data
volumes. Although there are some changes it needs to undergo
to survive in this new environment such as added security;
integration with organization existing IT.

When talking about Hadoop security; you have to consider
how Hadoop was conceptualized. Doug Cutting and Mike
Cafarella initially started developing Hadoop without a regard
to security goals. Certainly; it was not even considered as part
of the initial design. Hadoop was meant to process large
amounts of web data in the public domain; and hence security
was not the focus of development. That’s why it lacked a
security model and only provided basic authentication for
HDFS which was not very useful; since it was extremely easy
to impersonate another user.

II. HADOOP ENVIRONNMENT
Hadoop is a framework for storing data on large clusters of

commodity hardware. It consists of two main components: a
distributed processing framework named MapReduce and a
distributed file system known as the Hadoop distributed file
system; or HDFS.

A. MapReduce
Hadoop Map Reduce is a framework used to write

applications that process large amounts of data in parallel on

clusters of commodity hardware resources in a reliable; fault-
tolerant manner.

A Map Reduce job first divides the data into individual
chunks which are processed by Map jobs in parallel. The
outputs of the maps sorted by the framework are then input to
the reduce tasks.

Generally the input and the output of the job are both
stored in a file-system (HDFS).

B. HDFS
HDFS; which stand for Hadoop Distributed File System; is

a distributed file system that provides scalable and reliable
storage for large volumes of data and that is designed to span
large clusters of commodity servers.

HDFS contains a metadata server called the NameNode
that stores the hierarchical file and directory name space and
the corresponding metadata; and a set of DataNodes that stores
the individual blocks of each files. Each block; identified by a
block id; is replicated at multiple DataNodes. Client perform
file metadata operations such as create file and open file; at the
NameNode over an RPC protocol and read/write the data of a
file directly to DataNodes using a streaming socket protocol
called the data-transfer protocol.

C. Others Parts of Hadoop Environment
Hadoop was not designed and developed as a cohesive

system with predefined modules; but was rather developed as
a collage of modules that either correspond to various open
source projects or a set of (proprietary) extensions developed
by various vendors to supplement functionality lacking within
the Hadoop ecosystem.

The present Hadoop ecosystem consists of the Hadoop
kernel; the Map-Reduce(that provides Analysis of data in
clustered environment); the Hadoop Distributed File System
(which provides Storage of data) and a number of related
components such as Apache Hive; HBase; Oozie; Pig and
Zookeeper and these components are explained as below:

• HDFS: A highly faults tolerant distributed file system
that is responsible for storing data on the clusters.

• MapReduce: A powerful parallel programming technique
for distributed processing of vast amount of data on clusters.

• HBase: A column oriented distributed NoSQL database
for random read/write access.

• Pig: A high level data programming language for
analyzing data of Hadoop computation.

International Conference on Electrical, Mechanical and Industrial Engineering (ICEMIE 2016)

© 2016. The authors - Published by Atlantis Press 100

• Hue A Hadoop administration interface with handy GUI
tools for browsing files; issuing Hive and Pig queries; and
developing Oozie workflows

• Mahout A library of machine learning statistical
algorithms that were implemented in MapReduce and can run
natively on Hadoop

• Hive: A data warehousing application that provides a
SQL like access and relational model.

• Sqoop: A project for transferring/importing data between
relational databases and Hadoop.

• Oozie: An orchestration and workflow management for
dependent Hadoop jobs.

The following figure shows as a typical Hadoop ecosystem
(or else Hadoop environment) and how various ecosystem
components and stakeholders interact with each other.
Implementing the security controls in each of these
interactions requires elaborate planning and careful execution.

FIGURE I. A TYPICAL HADOOP ECOSYSTEM

III. KERBEROS OVERVIEW
Kerberos is an authentication protocol for “trusted hosts on

untrusted networks.” It simply means that Kerberos assumes
that all the hosts it’s communicating with are to be trusted and
that there is no spoofing involved or that the secret key it uses
is not compromised. To use Kerberos more effectively;
consider a few other key facts:

• Kerberos continuously depends on a central server. If the
central server is unavailable; no one can log in. It is possible to
use multiple “central” servers (to reduce the risk) or additional
authentication mechanisms (as fall back).

• Kerberos is heavily time dependent; and thus the clocks
of all the governed hosts must be synchronized within
configured limits (5 minutes by default). Most of the times;
Network Time Protocol daemons help to keep the clocks of
the governed hosts synchronized.

• Kerberos offers a single sign-on approach. A client needs
to provide a password only once per session and then can
transparently access all authorized services.

• Passwords should not be saved on clients or any
intermediate application servers. Kerberos stores them
centrally without any redundancy.

FIGURE II. KERBEROS DISTRIBUTION CENTER WITH ITS MAIN

COMPONENTS

A client requests access to a Kerberos-enabled service
using Kerberos client libraries. The Kerberos client contacts
the Kerberos Distribution Center; or KDC (the central
Kerberos server that hosts the credential database) and
requests access. If the provided credentials are valid; KDC
provides requested access. The KDC uses an internal database
for storing credentials; along with two main components: the
Authentication Server (AS) and the Ticket Granting Server
(TGS).

The Kerberos authentication process contains three main
steps:

• The AS grants the user (and host) a Ticket Granting
Ticket (TGT) as an authentication token. A TGT is valid for a
specific time only (validity is configured by Administrator
through the configuration file). In case of services principles
(logins used to run services or background processes)
requesting TGT; credentials are supplied to the AS through
special files called keytabs.

• The client uses credentials to decrypt the TGT and then
uses the TGT to get service ticket from the Ticket Granting
Server to access a “kerberized” service. A client can use the
same TGT for multiple TGS requests (till the TGT expires).

• The user (and host) uses the service ticket to authenticate
and access a specific Kerberos-enabled service.Finally;
complete content and organizational editing before formatting.
Please take note of the following items when proofreading
spelling and grammar:

IV. SECURITY ISSUES
There are numerous security issues for Hadoop

authentication as it was designed without a security approach.

Hadoop services do not authenticate users or other services.
As a result; Hadoop is subject to the following security risks.

-A user can access an HDFS or MapReduce cluster as any
other user. This makes it impossible to enforce access control

101

in an uncooperative environment. For example; file permission
checking on HDFS can be easily circumvented.

-An attacker can masquerade as Hadoop services. For
example; user code running on a MapReduce cluster can
register itself as a new TaskTracker.

DataNodes do not enforce any access control on accesses
to its data blocks. This makes it possible for an unauthorized
client to read a data block as long as she can supply its block
ID. It’s also possible for anyone to write arbitrary data blocks
to DataNodes

By default; Hadoop doesn't authenticate the services; and
hence a user can run custom services on any of the machines;
and this machine can be registered as DataNode or
TaskTracker/NodeManager. Hadoop will replicate the data to
all the Hadoop DataNodes; and hence the malicious user
machine that registers with NameNode will automatically start
receiving the data blocks from the Hadoop cluster. Hadoop has
a setting that restricts the machines which can register as
DataNodes to NameNode. If the dfs.hosts property in hdfs-
site.xml points to a file that contains one host per line; only
those hosts will be allowed to connect with NameNode and
register. By default; this setting is turned off. This brings up a
security hole where any Hadoop client can connect to any
DataNode and add malicious data blocks or read any data
block using the block ID.

A. Requirements
• Users are only allowed to access HDFS files that they

have permission to access.

• Users are only allowed to access or modify their own
MapReduce jobs.

• User to service mutual authentication to prevent
unauthorized NameNodes; DataNodes; JobTrackers; or
TaskTrackers.

• Service to service mutual authentication to prevent
unauthorized services from joining a cluster’s HDFS or
MapReduce service.

• The acquisition and use of Kerberos credentials will be
transparent to the user and applications; provided that the
operating system acquired a Kerberos Ticket Granting Tickets
(TGT) for the user at login.

V. SOLUTION
Hadoop comes with numerous security issues due to its

initial development: one without security regards.

A. User and service authentication
User authentication to NameNode and JobTracker services

is through Hadoop's remote procedure call using the Simple
Authentication and Security Layer (SASL) framework.
Kerberos is used as the authentication protocol to authenticate
the users within SASL. All Hadoop services support Kerberos
authentication. A client submits the MapReduce job to
JobTracker. MapReduce jobs are usually long-running jobs
and they need to access the Hadoop resources on behalf of the

user. This is achieved using the Delegation Token; Job Token;
and the Block Access Token.

B. Delegation Token
A Delegation Token authentication is a two-party

authentication protocol based on JAVA SASL Digest-MD5. A
Delegation Token is used between the user and NameNode to
authenticate the user. Once the user authenticates themselves
with NameNode using Kerberos; the user is provided with the
Delegation Token by NameNode. The user doesn't have to
perform Kerberos authentication once he/she obtains the
Delegation Token. The user also designates the JobTracker or
ResourceManager process as the user that will renew the
Delegation Token as part of the Delegation Token request.

The Delegation Token is secured and shared with
JobTracker or ResourceManager after authentication; and
JobTracker will use the Delegation Token for accessing the
HDFS resources on behalf of the user. JobTracker will
automatically renew this Delegation Token for long-running
jobs.

C. Job Token
A job runs on the TaskNodes and the user access has to be

secured in TaskNodes. When the user submits MapReduce job
to JobTracker; it will create a secret key that will be shared
with TaskTracker that will run the MapReduce job. This secret
key is the Job Token. The Job Token will be stored in the local
disk of TaskTracker with permission only for the user who
submitted the job. TaskTracker starts the child JVM task
(mapper or reducer) using the user ID that submitted the job.
Thus; the child JVM run will be able to access the Job Token
from the local directory and communicate securely with
TaskTracker using this Job Token. Thus; the Job Token is
used to ensure that an authenticated user submitting the job in
Hadoop has access to only the folders and jobs for which he is
authorized in the local file system of TaskNodes.

Once the Reduce jobs are started in TaskTracker; this
TaskTracker contacts TaskTracker that ran the Map task and
fetches the mapper output files. The Job Token is also used by
TaskTrackers to securely communicate with each other.

D. Block Access Token
Any Hadoop client requesting for data from HDFS needs

to fetch the data blocks directly from DataNode after it fetches
the block ID from NameNode. There should be a secured
mechanism where the user privileges are securely passed to
DataNode. The main purpose of the Block Access Token is to
ensure that only authorized users are able to access the data
blocks stored in DataNodes. When a client wants to access the
data stored in HDFS; it requests NameNode to provide the
block IDs for the files. NameNode verifies the requested user's
permissions for the file and provides the list of block IDs and
DataNode locations. The client then contacts DataNode to
fetch the required data block. To ensure that the authentication
performed by NameNode is also enforced at DataNode;
Hadoop implements the BAT. BAT is the token provided by
NameNode to a Hadoop client to pass data access
authentication information to DataNode.

102

The Block Access Token implements a symmetric key
encryption where both NameNode and DataNode share a
common secret key. DataNode receives this secret key once it
registers with NameNode and is regenerated periodically.
Each of these secret keys is identified by keyID.

BAT is lightweight and contains expirationDate; keyID;
ownerID; blockID; and accessModes. The access Mode
defines the permission available to the user for the requested
block ID. The BAT generated by NameNode is not renewable
and needs to be fetched again once the token expires. BAT has
a lifetime of 10 hours. Thus; BAT ensures that the data blocks
in DataNode are secured; and only authorized users can access
the data blocks.

The following figure shows the various interactions in a
secured Hadoop cluster:

FIGURE III. INTERACTION IN A SECURE HADOOP SYSTEM

VI. CONCLUSION
During the initial days of Big Data implementations using

Hadoop; the prime motivation was to get data into the Hadoop
cluster and perform analytics on it. As organizations have
matured their understanding of Big Data; the data security and
privacy policies of such implementations are being questioned.
Though Hadoop lacks a robust security and privacy
framework; the increasing interest in this area is ensuring that
appropriate solutions are developed. While security and
privacy issues can be addressed to an extent using existing
Hadoop mechanisms such as Kerberos for authentication;
more robust tools and techniques are needed and being
developed every day.

This paper shows a Hadoop authentication using Kerberos.
The security issue is pointed more in order to increase the
security in big data. We can improve security in big data by
combining approaches.

VII. REFERENCES
[1] Sudheesh Narayanan; Securing Hadoop; 1st ed.; Birmingham - Mumbai:

Packt Publishing; 2013.
[2] Bhushan Lakhe; Practical Hadoop Security; ed.; New-York: Apress;

2014.

[3] Dirk deRoos; Paul C. Zikopoulos; Bruce Brown; Rafael Coss; and
Roman B. Melnyk; Hadoop For Dummies; Hoboken; New Jersey; John
Wiley & Sons; Inc.; 2014

[4] Alex Holmes; Hadoop in Practice; Manning; New York; 2012
[5] Jerry Shenk; Layered Security: Why It Works; SANS Institute; 2013
[6] Kevin Hamlen; Murat Kantarcioglu; Latifur Khan; Bhavani

Thuraisingham; Security Issues For Cloud Computing; ser. Lecture
Notes in International Journal of Information Security and Privacy; 4(2);
39-51; April-June 2010.

[7] Venkata Narasimha Inukollu; Sailaja Arsi and Srinivasa Rao Ravuri;
Security Issues Associated With Big Data In Cloud Computing; in
International Journal of Network Security & Its Applications (IJNSA);
Vol.6; No.3; May 2014

[8] Saraladevi; Pazhaniraja; Victer Paul; Saleem Basha; Dhavachelvan; Big
Data and Hadoop-A Study in Security Perspective; in 2nd International
Symposium on Big Data and Cloud Computing (ISBCC’15); Elsevier;
2015

[9] Can Uzunkaya; Tolga Ensari; Yusuf Kavurucu; Hadoop Ecosystem and
Its Analysis on Tweets; in World Conference on Technology; Innovation
and Entrepreneurship; Elsevier; 2015

[10] Priya P. Sharma and Chandrakant P. Navdeti; Securing Big Data
Hadoop: A Review of Security Issues; Threats and Solution; in Priya P.
Sharma et al; / (IJCSIT) International Journal of Computer Science and
Information Technologies; Vol. 5 (2) ; 2014; 2126-2131

[11] Kevin T Smith; Big Data Security: The Evolution of Hadoop’s Security
Model

[12] M. Wegmuller; J. P. von der Weid; P. Oberson; and N. Gisin; “High
resolution fiber distributed measurements with coherent OFDR;” in Proc.
ECOC’00; 2000; paper 11.3.4; p. 109.

[13] R. E. Sorace; V. S. Reinhardt; and S. A. Vaughn; “High-speed digital-to-
RF converter;” U.S. Patent 5 668 842; Sep. 16; 1997.

[14] (2007) The IEEE website. [Online]. Available: http://www.ieee.org/
[15] Kevin T Smith; Big Data Security: The Evolution of Hadoop’s Security

Mode
[16] l on INFOQ. [Online].Available: http://www.infoq.com/articles/Hadoop

SecurityModel
[17] https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-

common/SecureMode.html#Authentication.

103

