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Abstract
A maximal repetition, or run, in a string, is a maximal periodic substring whose smallest period is
at most half the length of the substring. In this paper, we consider runs that correspond to a path
on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must
be a descendant/ancestor of the other. For a trie with n edges, we show that the number of runs
is less than n. We also show an O(n

√
log n log log n) time and O(n) space algorithm for counting

and finding the shallower endpoint of all runs. We further show an O(n log n) time and O(n) space
algorithm for finding both endpoints of all runs. We also discuss how to improve the running time
even more.
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1 Introduction

Repetitions are fundamental characteristics of strings, and their combinatorial properties as
well as their efficient computation has been a subject of extensive studies. Maximal periodic
substrings, or runs, is one of the most important types of repetitions, since they essentially
capture all occurrences of consecutively repeating substrings in a given string. One of the
reasons which makes runs important and interesting is that the number of runs contained
in a given string of length n is O(n) [18], in fact, less than n [1], and can be computed in
O(n) time assuming a constant or integer alphabet [18, 1], or in O(nα(n)) time for general
ordered alphabets [9], where α is the inverse Ackermann function.
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23:2 Computing Runs on a Trie

In this paper, we consider runs that correspond to a path on a trie, or in other words, on
a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of
the other. The contributions of this paper are as follows. For a trie with n edges, we show:

that the number of such periodically maximal paths is linear, and in fact less than n.
an O(n

√
logn log logn) time and O(n) space algorithm for counting and finding the

shallower endpoint of all such paths.
an O(n

√
logn log2 logn) time and O(n) space algorithm for finding both endpoints of

such paths.
Furthermore, we also discuss how to improve the running time even more.

1.1 Related Work
A similar problem was considered in [16, 8, 17], but differs in three aspects: they consider
distinct repetitions with integer powers on an unrooted (or undirected) tree. In this work, we
consider occurrences of repetitions with maximal (possibly fractional) powers on a rooted
(directed) tree.

2 Preliminaries

2.1 Strings, Periods, Maximal Repetitions, Lyndon Words
Let Σ = {1, . . . , σ} denote the alphabet. We consider an integer alphabet, i.e., σ = nc for
some constant c. Σ∗ is the set of strings over Σ. For any string w ∈ Σ∗, let w[i] denote the
ith symbol of w, and |w| the length of w. For any 1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i] · · ·w[j].
For technical reasons, we assume that w is followed by a distinct character (i.e. w[|w|+ 1])
in Σ that does not occur in w[1..|w|].

A string is primitive, if it is not a concatenation of 2 or more complete copies of the
same string. A string w = u2, for some string u, is called a square, and in particular, if u
is primitive, then w is called a primitively rooted square. An integer 1 ≤ p ≤ |w| is called
a period of w, if w[i] = w[i + p] for all 1 ≤ i ≤ |w| − p. The smallest period of w will be
denoted by per(w). For any period p of w, there exists a string x, called a border of w, such
that |x| = |w| − p and w = xy = zx for some y, z. A string is a repetition, if its smallest
period is at most half the length of the string. A maximal repetition, or run, is a maximal
periodic substring that is a repetition, i.e., a maximal repetition of a string w is an interval
[i..j] of positions where per(w[i..j]) ≤ (j − i+ 1)/2, and per(w[i..j]) 6= per(w[i′..j′]) for any
1 ≤ i′ ≤ i and j ≤ j′ ≤ n such that i′ 6= i or j′ 6= j. In other words, a run contains at least
two consecutive occurrences of a substring of length p, and the periodicity does not extend
to the left or right of the run. The smallest period of the run will be called the period of the
run. The fraction (j − i+ 1)/p ≥ 2 is called the exponent of the run.

Let ≺0 denote an arbitrary total ordering on Σ, as well as the lexicographic ordering
on Σ∗ induced by this ordering. We also consider the reverse ordering ≺1 on Σ (i.e.,
∀a, b ∈ Σ, a ≺0 b ⇐⇒ b ≺1 a), and the induced lexicographic ordering on Σ∗. For ` ∈ {0, 1},
let ¯̀= 1− `. A string w is a Lyndon word w.r.t. to a given lexicographic ordering, if w is
lexicographically smaller than any of its proper suffixes. A well known fact is that a Lyndon
word cannot have a non-empty border.

Crochemore et al. observed that in any run [i..j] with period p, and any lexicographic
ordering, there exists a substring of length p in the run, that is a Lyndon word [10, 11].
Such Lyndon words are called L-roots. Below, we briefly review the main result of [1] which
essentially tied longest Lyndon words starting at specific positions within the run, to L-roots
of runs. This will be the basis for our new results for tries.
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I Lemma 1 (Lemma 3.2 of [1]). For any position 1 ≤ i ≤ |w| of string w, let ` ∈ {0, 1} be
such that w[k] ≺` w[i] for k = min{k′ | w[k′] 6= w[i], k′ > i}. Then, the longest Lyndon word
that starts at position i is w[i..i] w.r.t ≺`, and w[i..j] for some j ≥ k w.r.t. ≺¯̀.1

I Lemma 2 (Lemma 3.3 of [1]). Let r = [i..j] be a run in w with period p, and let ` ∈ {0, 1}
be such that w[j + 1] ≺` w[j + 1− p]. Then, any L-root w[i′..j′] of r with respect to ≺` is the
longest Lyndon word with respect to ≺` that is a prefix of w[i′..|w|].

Since an L-root cannot be shared by two different runs, it follows from Lemma 2 that
the number of runs is at most 2n, since each position can be the starting point of at most
two L-roots that correspond to distinct runs. In [1], a stronger bound of n was shown from
the observation that each run contains at least one L-root that does not begin at the first
position of the run, and that the two longest Lyndon words starting at a given position for
the two lexicographic orders cannot simultaneously be such L-roots of runs. This is because
if w[i′..i′] and w[i′..j′] were L-roots and the runs start before position i′, then, from the
periods of the two runs, it must be that w[i′ − 1] = w[i′] = w[j′] contradicting that w[i′..j′]
is a Lyndon word and cannot have a non-empty border. In Section 3.1, we will see that the
last argument does not completely carry over to the case of tries, but show that we can still
improve the bound again to n.

The above lemmas also lead to a new linear time algorithm for computing all runs, that
consists of the following steps:
1. compute the longest Lyndon word that starts at each position for both lexicographic

orders ≺0 and ≺1,
2. check whether there is a run for which the longest Lyndon word corresponds to an L-root.

There are several ways to compute the first step in amortized constant time for each
position, but it essentially involves computing the next smaller values (NSV) in the inverse
suffix array of the string. We describe the algorithm in more detail in Section 3.2, and will
see that the amortization of the standard algorithm does not carry over to the trie case.
We give a new linear time algorithm using the static tree set-union data structure (more
specifically, decremental nearest marked ancestor queries) [14], which does carry over to the
trie case.

The second step can be computed in constant time per candidate L-root with linear
time-preprocessing, by using longest common extension queries (e.g. [13]) in the forward and
reverse directions of the string. Unfortunately again, this does not directly carry over to
the trie case because, as far as we know, longest common extension queries on trees can be
computed in constant time only in the direction toward the root of the trie, when space is
restricted to linear in the size of the trie. In Section 3.3, we will show how to apply the range
predecessor/successor data structure of [2] to this problem.

2.2 Common Suffix Trie
A trie is a rooted tree with labeled edges, such that each edge to the children of a node
is labeled with distinct symbols. A trie can be considered as representing a set of strings
obtained by concatenating the labels on a root to leaf path. Note that for a trie with n edges,
the total length of such strings can be quadratic in n. An example can be given by the set
of strings X = {xc1, xc2, · · ·xcn} where x ∈ Σn−1 is an arbitrary string and c1, . . . , cn ∈ Σ

1 Note that j becomes |w| + 1 when i = |w|.
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Figure 1 Example of runs in a trie. (v1, w1) is a run with period 3, and (v2, w2) is a run with
period 2.

are pairwise distinct characters. Here, the size of the trie is Θ(n), while the total length
of strings is Θ(n2). Also notice that the total number of distinct suffixes of strings in X
is also Θ(n2). However if we consider the strings in the reverse direction, i.e., consider
edges of the trie to be directed toward the root, the number of distinct suffixes is linear in
the size of the tree. Such tries are called common suffix tries [7]. We will use the terms
parent/child/ancestor/descendant with the standard meaning based on the undirected trie,
e.g., the root is an ancestor of all nodes in the trie. For any node u of the trie, par(u) will
denote its parent node. Also, we consider a node to be an ancestor/descendant of itself.

For any nodes u, v of the trie where v is an ancestor of u, let str(u, v) denote the string
obtained by concatenating the labels on the path from u to v. For technical reasons, we
assume that the root node has an auxiliary parent node ⊥, where the edge is labeled by a
distinct character in Σ that is not used elsewhere in the trie. We denote by suf (v) the string
obtained by concatenating the labels on the path from v to ⊥, i.e., suf (v) = str(v,⊥). Such
strings will be called a suffix of the trie.

Note that a trie can be pre-processed in linear time so that for any node v, the ancestor
of node v at an arbitrary specified depth d can be obtained in constant time (e.g. [4]).

3 Runs in a Trie

3.1 The Number of Runs in a Trie

We first define runs on a trie. A run (vi, vj) on a trie T is a maximal periodic path with
endpoints vi and vj , where vj is an ancestor of vi and str(vi, vj) is a repetition. More
precisely, per(str(vi, vj)) ≤ |str(vi, vj)|/2, and for any descendant vi′ of vi and ancestor vj′

of vj , per(str(vi, vj)) 6= per(str(vi′ , vj′)) if vi′ 6= vi or vj′ 6= vj .
Noticing that for any node in the trie its parent is unique, it is easy to see that analogies

of Lemmas 1 and 2 hold for tries. Thus, we have the following.

I Corollary 3. For any node v except the root or ⊥, let wv = suf (v), and ` ∈ {0, 1} be such
that wv[k] ≺` wv[1] for k = min{k′ | wv[k′] 6= wv[1], k′ > 1}. Then, the longest Lyndon word
that is a prefix of wv is wv[1..1] w.r.t. ≺` and wv[1..j] w.r.t. ≺¯̀ for some j ≥ k.

I Corollary 4. Let r = (vi, vj) be a run with period p in the trie, wv = suf (vi), and ` ∈ {0, 1}
be such that wv[x+ 1] ≺` wv[x− p+ 1], where x = |str(vi, vj)|. Then, any L-root str(vi′ , vj′)
of the run with respect to ≺` is the longest Lyndon word that is a prefix of suf (vi′).
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Since we assumed that the edge labels of the children of a given node in a trie are distinct,
a given L-root can only correspond to one distinct run; i.e., the extension of the period in
both directions from an L-root is uniquely determined. Therefore, the argument for standard
strings carries over to the trie case, and it follows that the number of runs must be less than
2n. We further observe the following

I Theorem 5. The maximum number of runs in a trie with n edges is less than n.

Proof. Suppose str(vi′ , par(vi′)) and str(vi′ , vj′) are simultaneously L-roots of runs respect-
ively w.r.t. ≺` and ≺¯̀, and that they do not start at the beginning of the runs. Let
p = |str(vi′ , vj′)| and wvi′ = suf (vi′). If vi′ has only one child, this leads to a contradiction
using the same argument as the case for strings; i.e., if u is the child of vi′ , then, from
the periods of the two runs, str(u, vi′) = wvi′ [1] = wvi′ [p] contradicting that wvi′ [1..p] is a
Lyndon word and cannot have a non-empty border. Thus, vi′ must have at least two children,
u, u′, where str(u, vi′) = wvi′ [1] and str(u′, vi′) = wvi′ [p]. Let k be the number of branching
nodes in the trie. Then, the number of leaves is at least k + 1. Since a run cannot start
before a leaf node, this means that a longest Lyndon word starting at a leaf cannot be an
L-root that does not start at the beginning of the run. Therefore, although there can be at
most k nodes such that both longest Lyndon words are such L-roots, there exist at least
k + 1 nodes where both are not. Thus, the theorem holds. J

In a similar way to Theorem 3.6 of [1], we can bound the sum of exponents of all runs in a trie.

I Corollary 6. The sum of exponents of all runs in a trie with n edges is less than 3n.

Proof. A given run r with exponent er contains at least ber − 1c ≥ 1 occurrences of its
L-roots that do not start at the beginning of the run, each corresponding to a longest
Lyndon word starting at that position. From the proof of Theorem 5, the total number
of these L-roots is less than n. Let Runs denote the set of all runs in the trie. Then,∑

r∈Runs(er − 2) ≤
∑

r∈Runsber − 1c < n, and the Corollary follows. J

3.2 Computing Longest Lyndon Words
Next, we consider the problem of computing, for any node v of the trie, the longest Lyndon
word that is a prefix of suf (v). We first describe the algorithm for strings, which is based on
the following lemma.

I Lemma 7. For any string w and position 1 ≤ i < |w|, the longest Lyndon word starting
at i w.r.t. ≺ is w[i..j − 1], where j is such that j = min{k > i | w[k..|w|] ≺ w[i..|w|]}.

Proof. Let j = min{k > i | w[k..|w|] ≺ w[i..|w|]}. By definition, we have w[k..|w|] � w[i..|w|]
for any i < k < j. For any such k, w[k..|w|] = w[k..j−1]w[j..|w|] � w[i..i+(j−1−k)]w[i+(j−
k)..j− 1]w[j..|w|] = w[i..|w|]. If the longest common prefix of w[k..|w|] and w[i..|w|] is longer
than or equal to w[k..j − 1], this implies w[j..|w|] � w[i+ (j − k)..j − 1]w[j..|w|] � w[i..|w|],
a contradiction. Therefore, the longest common prefix of w[k..|w|] and w[i..|w|] must be
shorter than w[k..j− 1], implying that w[i..j− 1] ≺ w[k..j− 1]. Thus, w[i..j− 1] is a Lyndon
word. Suppose w[i..k] is a Lyndon word for some k ≥ j. Then, w[i..k] ≺ w[j..k]. Since
|w[i..k]| > |w[j..k]|, w[i..k] cannot be a prefix of w[j..k] which implies w[i..|w|] ≺ w[j..|w|],
contradicting the definition of j. Thus, w[i..j−1] is the longest Lyndon word starting at i. J

From Lemma 7, the longest Lyndon word starting at each position of a string w can be
computed in linear time, given the inverse suffix array of w. The inverse suffix array ISA[1..|w|]
of w is an array of integers such that ISA[i] = j when w[i..|w|] is the lexicographically jth

CPM 2019



23:6 Computing Runs on a Trie

smallest suffix of w. That is, the j in Lemma 7 can be restated as j = min{k > i | ISA[k] <
ISA[i]}. This can be restated as the problem of finding the next smaller value (NSV) for
each position of the ISA, for which there exists a simple linear time algorithm (e.g. [24])
as show in Algorithm 1. The linear running time comes from a simple amortized analysis;

Algorithm 1: Computing NSV on array A of integers.
// assumes A[n+ 1] is smaller than all values in A.

1 NSV [n] = n+ 1;
2 for i = n− 1 to 1 do
3 x = i+ 1;
4 while A[i] ≤ A[x] do
5 x = NSV [x];
6 NSV [i] = x;

in the while loop, NSV [x] is only accessed once for any position x since NSV [i] is set to a
larger value and thus will subsequently be skipped.

Since, as before, the parent of a node is unique, Lemma 7 carries over to the trie case.
We can assign the lexicographic rank ISA[v] of suf (v) to each node v in linear time from the
suffix tree of the trie, which is a compacted trie containing all and only suffixes of the trie.

I Theorem 8 (suffix tree of a trie [7, 22]). The suffix tree of a trie on a constant or integer
alphabet can be represented and constructed in O(n) time.

The problem now is to compute, for each node vi, the closest ancestor vj of vi such that the
lexicographic rank of suf (vj) is smaller than that of suf (vi). Algorithm 1 can be modified to
correctly compute the NSV values on the trie; the for loop is modified to enumerate nodes in
some order such that the parent of a considered node is already processed, and line 3 can be
changed to x = par(x). However, the amortization will not work; the existence of branching
paths means there can be more than one child of a given node, and the same position (node)
x could be accessed in the while loop for multiple paths, leading to a super-linear running
time.

To overcome this problem, we introduce a new, (conceptually) simple linear time algorithm
based on nearest marked ancestor queries.

I Theorem 9 (decremental nearest marked ancestor [14]). A given tree can be processed in
linear time such that all nodes are initially marked, and the following operations can be done
in amortized constant time:

nma(v): return the nearest ancestor node of v that is marked.
unmark(v): unmark the node v.

The pseudo-code of our algorithm is shown in Algorithm 2.

Algorithm 2: Computing NSV on trie with values ISA.
1 Preprocess trie for decremental nearest marked ancestor;
2 foreach node v in decreasing order of ISA[v] do
3 unmark(v);
4 NSV [v] = nma(v);
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I Theorem 10. Given a trie of size n, the longest Lyndon word that is a prefix of suf (v)
for each v can be computed in total O(n) time and space.

Proof. It is easy to see the linear running time of Algorithm 2. The correctness is also easy
to see, because the nodes are processed in decreasing order of lexicographic rank, and thus,
all and only nodes with larger lexicographic rank are unmarked. J

3.3 Computing Runs
To compute all runs in a trie, we extend the algorithm for strings to the trie case. After
computing the longest Lyndon word that is a prefix of suf (v) for each node v for the
two lexicographic orderings ≺0 and ≺1, we must next see if they are L-roots of runs by
checking how long the periodicity extends. Given a longest Lyndon word y = str(vi, vj)
w.r.t. ≺` that starts at vi, we can compute the longest common extension from nodes vi

and vj towards the root, i.e., the longest common prefix z = str(vj , vk) between suf (vi) and
suf (vj). To avoid outputting duplicate runs, y will be a candidate L-root only if |z| < |y|
and str(vi)[|y| + |z| + 1] ≺` str(vi)[|z| + 1]. Using the suffix tree of the trie, this longest
common extension query can be computed in constant time after linear time preprocessing,
since it amounts to lowest common ancestor queries (e.g. [3]). The central difficulty of our
problem is in computing the longest common extension in the opposite direction, i.e. towards
the leaves, because the paths can be branching. We cannot solve this problem by simply
considering longest common extensions on the common suffix trie for the reverse strings,
since, as observed in Section 2, this can lead to a quadratic blow-up in the size of the trie.

We overcome this problem by reducing the longest common extension query in the leaf
direction to several queries of finding the lexicographically closest suffix that is in a specific
subtree and at a specific depth, combined with some naive traversal. We use the following
result for range predecessor queries multiple times to achieve Lemma 12. A range predecessor
problem is to pre-process n points on a [1, n]2 grid where all points differ in both coordinates,
so as to answer the query: given three integers x1, x2, y find the point rpred(x1, x2, y) = (u, v)
such that x1 ≤ u ≤ x2, and v is the largest such that v ≤ y.

I Theorem 11 (Range Predecessor Queries (Theorem 5.1 in [2])). Given n points from the grid
[1, n]2, we can in O(n

√
logn) time build a data structure that occupies O(n logn) bits of space

and that answers range predecessor queries in O(
√

logn log logn) time. The construction
uses O(n logn) bits of working space.

By converting each of the y coordinates to n− y + 1, range successor queries rsucc(x1, x2, y)
can also be achieved in the same time/space bounds.

I Lemma 12. A trie of size n can be pre-processed in O(n
√

logn) time and O(n) space so
that given a node v and a positive integer d > |suf (v)|, we can answer in O(

√
logn log logn)

time, the node v′ such that v′ is a descendant of v where |suf (v′)| = d and of all such nodes,
has the longest common prefix with suf (v).

Proof. We construct several range predecessor/successor data structures of Theorem 11,
where each point in the grid corresponds to a node in the trie. The first coordinate (which we
will consider as the identifier of the node) is given by the order of nodes that would appear
in a breadth-first traversal of the trie, where nodes of the same depth are ordered as they
would appear in a depth-first traversal. Thus, for any depth d, all nodes at depth d can be
represented in an interval [id..jd]. The second coordinate is given by each of the following
three types of values in the range [1, n], and can be assigned to each node v by a simple
depth-first traversal on the trie.
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(24,16,4,18)  (22,15,5,16) (20,13,7,12)      (17,12,8,6)       (14,11,9,15)

(7,24,20,17) (5,23,21,13)
(12,19,15,19) (10,18,16,21)

(11,8,10,11)   (9,7,11,5)

(8,6,17,14) (6,5,18,9) (4,4,19,2)

(19,22,13,23)

(18,21,12,7)    (15,20,14,22)

(16,10,1,10)     (13,9,2,3)

(23,17,6,20)

(21,14,3,4)

(3,3,22,8)     (2,2,23,1) (1,1,24,0)

Figure 2 An example of values assigned for each node v of the trie for Figure 1. Each 4-tuple
shows (v, bv, ev, lv), where v is the identifier of the node, bv is the pre-order rank, ev is the post-order
rank, and lv is the lexicographic rank of suf (v).

bv: pre-order rank of node v in a depth-first traversal.
ev: post-order rank of node v in a depth-first traversal.
lv: lexicographic rank of suf (v) (i.e. ISA[v]).

The construction costs O(n
√

logn) time and O(n) (words of) space due to Theorem 11.
Now, the desired node u that is the answer to our query lies in the range [id..jd]. The

nodes corresponding to descendants of v further lie in a sub-range, namely, [id,v..jd,v], which
can be computed by (id,v, b

′) = rsucc(id, jd, bv) and (jd,v, e
′) = rpred(id, jd, ev), respectively

using the successor and predecessor data structures for pre-order rank and post-order rank.
Finally, the node u which gives the longest common prefix must be one of the lex-

icographically closest ones in this range, i.e., it is one of (u1, l
′
1) = rpred(id,v, jd,v, lv) or

(u2, l
′
2) = rsucc(id,v, jd,v, lv), using the predecessor/successor data structure for lexicographic

rank. The longest common prefix between suf (u1) and suf (v) as well as that between suf (u2)
and suf (v) can be computed in constant time with linear time pre-processing, as mentioned
before. Thus, the total time is O(

√
logn log logn) for the four range queries. J

We first use Lemma 12, once for each candidate L-root, to determine whether the
periodicity of the candidate L-root can extend long enough in the leaf direction to form a run.

I Theorem 13. Given a trie of size n, we can in O(n
√

logn log logn) time and O(n) space,
count the total number of runs in the trie, as well as identify the shallower endpoint of
all runs.

Proof. Let y = str(vi, vj) be a candidate L-root and let z = str(vj , vk) be its extension in
the root direction as described in the beginning of Section 3.3. Let p = |y|. Also, let v′ be the
node on the path from vi and vj at depth |suf (vk)|+ p. We use Lemma 12 in order to check
if there exists a node vl that is a descendant of v′ and at depth |suf (vk)|+ 2p such that the
longest common prefix between str(vl) and str(v′) is at least p. If vl does not exist, then the
L-root cannot be extended to a run. If vl does exist, this implies that str(vl, v

′) = str(v′, vk),
and since z = str(vj , vk) = str(vi, v

′) is a suffix of str(v′, vk) and thus of str(vl, v
′), vl must

be a descendant of vi because labels on the edges to child nodes are distinct. Thus, the prefix
of length 2p of suf (vl) has period p, contains str(vi, vj), and the periodicity ends at vk, i.e.,
it is an endpoint of a run with str(vi, vj) as an L-root.

Such queries are conducted at most once for each candidate L-root, so the total time is
O(n
√

logn log logn). J

Finally, we describe how to compute the other endpoint. We make use of Theorem 13
and the following static dictionary.
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I Theorem 14 (Static Dictionary (Theorem 1 in [21])). Suppose that a set of n integers from
the universe {0, 1, . . . , nO(1)} is given. A static linear space dictionary on that set can be
deterministically constructed on a word RAM in time O(n log logn), so that lookups to the
dictionary take constant time.

I Theorem 15. Given a trie of size n, we can compute in O(n logn) time and O(n) space,
all runs (vi, vj) in the trie.

Proof. After confirming an occurrence of the run as described in Theorem 13, we further
repeatedly use Lemma 12 to check if the periodicity can be further extended in the leaf
direction by length p. The total number of times that this is repeated is bounded by the
sum of exponents of all runs in the trie, which is linear (Corollary 6). Therefore, the total
time for this is O(n

√
logn log logn).

It remains to find the remaining extension shorter than the period p of the run. We
compute this extension naively edge by edge. We know which character we need to extend
by, since we know str(vi, vj) is what is repeating. To avoid the O(log σ) factor for finding the
child node of a branching node, we use the static dictionary by Ruzic [21], so that each child
node can be found in constant time. This can be done with O(n log logn) time and O(n)
space pre-processing using Theorem 14; each edge can be considered as a pair of integers
from 1 to n and 1 to nc, representing a unique id of the node, and the label on the edge.
The pair can be encoded as an integer from 1 to nO(1), where the encoding and decoding
can be done in constant time. Given a node and edge label, the child can be obtained in
constant time by looking up the dictionary.

Finally, since each naive extension implies an occurrence of a primitively rooted square,
the total number of naive extensions is bounded by the total number of primitively rooted
squares that occur in the trie. Due to the three squares lemma (Lemma 10 of [12]), it follows
that for each node v, there can only be O(log |suf (v)|) primitively rooted squares that are
prefixes of suf (v). Thus, it follows that their total number is O(n logn).

From the above arguments, computing both endpoints of all runs can be done in O(n logn)
time using O(n) space. J

4 Discussion

Shortly after the submission of the paper, we realized that running time could be improved
by using a doubling + binary search when extending the run in the leaf direction, rather
than a naive traversal. If the remaining length of a run is t, the query of Lemma 12 is
conducted O(log t) times. Let Runs be the set of all runs in the trie, and let tr denote the
length of the remaining extension for run r ∈ Runs. The total number of queries is thus∑

r∈Runs log tr, where
∑

r∈Runs tr = O(n logn) as mentioned in the proof of Theorem 15.
Since

∑
r∈Runs log tr = log(

∏
r∈Runs tr), this is maximized when each tr has the same

length, i.e., tr = Θ( n log n
|Runs| ). Thus,

∑
r∈Runs log tr = O(|Runs| log n log n

|Runs| ). Noticing that
|Runs| log n

|Runs| = O(n), the total number of times Lemma 12 is used can be bounded by
O(n log logn). Therefore, the total running time would be O(n

√
logn(log logn)2).

Furthermore, after posting our paper with the above improvement to arXiv [23], Tomohiro
I pointed us to the paper by Bille et al. [5], where they consider LCE queries on tries in the
leaf direction. The path-tree query in their paper can be used in place of Lemma 12 and
is more powerful. A path-tree query, given nodes v1, v2 and w, where v2 is a descendant of
v1, returns the longest common prefix of the path from v1 to v2, and any path from w to a
descendant leaf.

I Theorem 16 (Theorem 2 of [5]). For a tree T with n nodes, a data structure of size O(n)
can be constructed in O(n) time to answer path–tree LCE queries in O((log logn)2) time.

CPM 2019
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The number of times the path-tree query is used can be bounded by the total sum of
exponents of runs, and thus is linear. Therefore, the total computation time can be improved
to O(n(log logn)2).

5 Conclusion

We generalized the notion of runs in strings to runs in tries, and showed that the analysis of
the maximum number of runs, as well as algorithms for computing runs can be extended
and adapted to the trie case, but with an increase in running time.

Our algorithm can output all primitively rooted squares in O(n logn) time, which is tight,
since there can be Θ(n logn) primitively rooted squares in a string, e.g., Fibonacci words [20],
and thus in a trie.

An obvious open problem is whether there exists a linear time algorithm for computing
all runs in a trie. For strings, there exists another linear time algorithm for computing all
runs that is based on the Lempel-Ziv parsing [18]. It is not clear how this algorithm could
be extended to the case of tries. The case for general ordered alphabets, instead of integer
alphabets, is another open problem [6, 19, 15, 9].
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