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ABSTRACT. We present a simple exact algorithm for the INDEPENDENT SET problem with a run-
time bounded by O(1.2132npoly(n)). This bound is obtained by, firstly, applying a new branching
rule and, secondly, by a distinct, computer-aided case analysis. The new branching rule uses the
concept of satellites and has previously only been used in an algorithm for sparse graphs. The
computer-aided case analysis allows us to capture the behavior of our algorithm in more detail than
in a traditional analysis. The main purpose of this paper is to demonstrate how a very simple algo-
rithm can outperform more complicated ones if the right analysis of its running time is performed.

1 Introduction

INDEPENDENT SET is one of the most important graph problems. Although it is one of the

classical NP-complete problems, it allows for very fast exact algorithms. Even the very triv-

ial branching algorithm that recursively tries whether a node of degree at least two belongs

to an independent set or not yields a runtime of O∗(1.47n)†. More sophisticated algorithms

improve this bound by a large margin.

In this paper, we present a new algorithm for INDEPENDENT SET with a runtime of

O∗(1.2132n) that improves over the runtime O∗(1.2201n) of the previously best published

algorithm by Fomin, Grandoni, and Kratsch [5]. Our algorithm is based on their algorithm

and is rather simple: We only use two simple branching rules and few simplification rules.

The improvement is based on (1) the usage of the new satellites branching rule, and (2) on

a new kind of a computer-generated proof. The latter enables us to estimate the effects of

reduction rules beyond the neighborhood of a single vertex.

Of course, there is a long history of computer-aided proofs, e.g., for the four color the-

orem [1, 2]. Still, computer-aided proofs are often hard to verify and sometimes regarded as

unaesthetic. We propose a framework that hopefully allows a better and easier verification

of automated proofs. The INDEPENDENT SET problem is well-suited for our framework,

since the efficiency of branching algorithms for INDEPENDENT SET depends mostly on the

case distinctions in small induced subgraphs. Our approach is to use a computer to gener-

ate all of them and to evaluate the algorithm in every individual case. Only when time or

space constraints render it impossible to generate all cases with a computer, we switch to a

classical analysis.

We only briefly recall previous results for INDEPENDENT SET: The first algorithm that

improves over the trivial bounds is due to Tarjan and Trojanowski [19]. This algorithm,

∗Supported by the DFG under grant RO 927/7
†The O∗ notation suppresses polynomial factors.

c© Kneis, Langer, Rossmanith; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 287–298
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany. 
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2326



288 A FINE-GRAINED ANALYSIS OF A SIMPLE INDEPENDENT SET ALGORITHM

which was introduced as early as in 1977, already has a runtime bound of O∗(1.261n). Fur-

ther improvements were achieved by Jian [8] and Robson [17] to O∗(1.235) and O∗(1.228n),

respectively. In the same paper, Robson was also able to prove an upper bound of O∗(1.211n)
using exponential space. It is noteworthy that this is based on the Memorization technique,

which cannot be used in algorithms that employ so-called folding to remove nodes of degree

two.

Fomin, Grandoni, and Kratsch [5] recently employed their Measure & Conquer tech-

nique [6] to a new algorithm for INDEPENDENT SET with a runtime bounded by O∗(1.2201n)
that requires only polynomial space. The algorithm itself is extremely simple and the im-

proved runtime is mainly due to an elegant analysis and a new branching rule using mirrors.

Furthermore, it is worthwhile to mention that there is work in progress that might to

lead to an even faster, but very complicated algorithm that is partly computer-generated. A

preliminary version was published by Robson as a technical report [16, 18].

2 Preliminaries

Let G = (V, E) denote an undirected graph. The size of a maximum independent set in G is

denoted by α(G). For any v ∈ V and any i ∈ N, the set of nodes of having distance exactly i

to v is denoted by Ni(v), i.e., the neighborhood of v is denoted by N(v) = N1(v). Similarly,

Ni[v] denotes the set of nodes having distance at most i to v, such that N[v] = N1[v] =
N(v) ∪ {v}. The degree of a node v ∈ V, i.e., the number of its neighbors in G, is denoted by

deg(v) = degG(v). We assume the reader is familiar with the basic techniques and notation

of branching algorithms, in particular with the concept of measures (or potentials), branching

vectors, and their corresponding branching number.

The concept of mirrors was introduced by Fomin, Grandoni, and Kratsch [5]: For some

v ∈ V, a node u ∈ N2(v) is called mirror of v, if N(v) \ N(u) is a clique. We denote the set of

of a node v mirrors by M(v). Mirrors allow for efficient branching [5]:

LEMMA 1. Let G = (V, E) be a graph, and v ∈ V. Then α(G) = max{α(G \ (M(v) ∪
{v})), α(G \ N[v]) + 1}.

We also apply the concept of satellites, which has only been used in algorithms for

sparse graphs [9] before. Figure 1 shows some examples of mirrors and satellites, the latter

of which are defined as follows:

DEFINITION 2. Let G be a graph v ∈ V. A node u ∈ N2(v) is called satellite of v, if there is
some u′ ∈ N(v) such that N[u′] \ N[v] = {u}. The set of satellites of a node v is denoted by
S(v), and we also use the notation S[v] := S(v) ∪ {v}.

Note that simple branching algorithms such as the one by Fomin, Grandoni, and Kratsch

or our own algorithm typically perform well when they branch on a node v such that N2(v)
is large. If N2(v) is rather small, there usually is some mirror u of v and branching on v

according to Lemma 1 is still efficient. However, there are also some situations where N2(v)
is small, but v has no mirrors, which is the case in four of the five hardest cases in the anal-

ysis of Fomin, Grandoni, and Kratsch [5]. Fortunately, satellites allow us to improve these

cases, since by the number of edges between N(v) and N2(v), we can conclude that a satel-
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Figure 1: In the graph depicted on the left, u is a mirror of v. In the graph depicted in the

middle, u is a satellite of v (through u′). An optimal independent set in the graph on the

right contains all nodes in M(v) but no node in S(v). Thus, branching on G \ ({v} ∪ M(v))
and G \ N[{v} ∪ S(v)] at the same time does not yield the correct solution.

v
x y

u w
N(v)

Figure 2: The node v has two adjacent satellites and thus α(G) = α(G \ {v}): If an optimal

independent set contains x and v, we can replace v by w. If it contains y and v, we can pick

u instead of v.

lite of v must exist, if there is no mirror. The following lemma ([9], Lemma 1) defines the

corresponding branching rule.

LEMMA 3. Let G = (V, E) be a graph, and v ∈ V. Then α(G) = max{α(G \ {v}), α(G \
N[S[v]]) + |S(v)| + 1}.

Note that satellites are particularly useful on graphs with large maximum degree that

cannot be analyzed in a computer-aided proof. Unfortunately, we cannot simultaneously

branch on mirrors and satellites, as depicted in Figure 1.

Furthermore, our algorithm uses the following well-known reduction rules for inde-

pendent set that we shortly recall: Firstly, any nodes of degree zero or one can be added

to the solution. Similarly, nodes that dominate‡ some other node can be removed from G.

Finally, a nodes of degree two not subject to domination can be folded, i.e., its neighbors

can be merged and the node itself can be removed (see, e.g., [4]). Moreover, Fürer’s reduc-

tion rule [7] guarantees that each small induced subgraph contains at least three nodes with

edges to three distinct nodes in the remaining graph. A precise definition can be found in

the appendix.

Finally, satellites can also be used in the following reduction rule (exemplified in Fig-

ure 2), which was proven in [9].

LEMMA 4. Let G = (V, E) be a graph, and v, u, w ∈ V, such that u, w ∈ S(v) and {u, w} ∈ E.
Then α(G) = α(G \ {v}).

‡Let u, v ∈ V be two adjacent nodes. We say u dominates v iff N[u] ⊇ N[v].
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We say G is reduced, if no further reduction rules can be applied. Moreover, we de-

note by R(G) the reduced graph obtained from G by applying the reduction rules in some

(arbitrarily) fixed order until no more rules can be applied.

Following the Measure & Conquer paradigm [6], we define the following measure

on G. This will allow us to prove a better runtime bound than an analysis in |V|.

DEFINITION 5. Let ϕi = 0 for i ≤ 2, ϕi = 1 for i ≥ 7, ϕ3 = 0.474506, ϕ4 = 0.786716, ϕ5 =
0.920901, and ϕ6 = 0.979383: For a graph G = (V, E) and v ∈ V, we let ϕG(v) := ϕdegG(v)

and

ϕ(G) = ∑
v∈V

ϕG(v).

Obviously, ϕ(G) ≤ |V|. Any runtime bound in ϕ therefore immediately implies a run-

time bound in |V|. Note that the values for ϕi used in this definition are chosen in a way

that optimizes the obtained runtime bound. However, these values depend on several thou-

sand recurrences introduced later on, hence they can not be derived easily. We thus used a

complex optimization heuristic to compute these values. For i ≥ 5, ϕi is determined by the

runtime on regular graphs of degree i, whereas the values for ϕ3 and ϕ4 are determined by

more complex cases (see [10]).

We write ϕ(v) instead of ϕG(v) whenever G can easily be deducted from the context,

and let ∆d := min{ ϕi − ϕi−1 | 4 ≤ i ≤ d } be the minimal measure difference between two

nodes in reduced graphs with maximum degree d. Applying the reductions rules does not

increase the measure:

LEMMA 6. Let G = (V, E) be a graph. Then, ϕ(R(G)) ≤ ϕ(G).

PROOF. Removing nodes from the graph respects ϕ = ϕ(G), as some nodes are removed

completely and the degree of some adjacent nodes decreases. This does not increase the

degree of any node and since ϕi ≤ ϕi+1 for all i ∈ N, ϕ decreases whenever a node is

removed.

Whenever a node is folded, its two neighbors u, v are merged. The new node v′ can be

of higher degree than u and v, but will be at most deg(v′) ≤ deg(u) + deg(v)− 2. Thus, the

measure changes by at most a := ϕdeg(u)+deg(v)−2 − ϕdeg(u) − ϕdeg(v). A short computation

of all possible combinations shows a ≤ 0.

Finally, Fürer’s reduction rule either removes some nodes of the separator {u1, u2},

adds at most on edge between {u1, u2} or merges {u1, u2} into a new node u. Similar to

the cases above, removing nodes and merging nodes cannot increase ϕ. Adding an edge

between u1 and u2 does not increase ϕ, because at the same time other edges incident to u1

and u2 are removed.

3 A Simple Algorithm for the Independent Set Problem

Combining all the results above, we easily obtain a simple algorithm for the INDEPENDENT

SET problem (see Algorithm 1). Its correctness is easy to see, since the reduction rules are

valid and the two possible respective branching rules are correct by Lemmas 1 and 3.
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Algorithm 1 A fast algorithm for INDEPENDENT SET.

Input: a graph G = (V, E)
Output: α(G)

01: apply reduction rules to G;

02: if G is not connected then compute α for each component independently;

03: if G is cubic then apply algorithm for cubic graphs;

04: select v ∈ V of maximum degree that yields the best branching number;

05: if the mirror branch on v is more efficient than the satellite branch then

06: return max(α(G \ M[v]), 1 + α(G \ N[v]));

07: else return max(α(G \ {v}), 1 + |S(v)| + α(G \ N[S[v]]));

THEOREM 7. Let G = (V, E). Then, Algorithm 1 correctly returns α(G).

The remaining part of this paper is devoted to the runtime analysis of Algorithm 1. Ba-

sically, this is done by a large case distinction on the effects of the branching and reduction

rules when branching on a node v, until we obtain a cubic graph where a faster algorithm

exists [9]. If v is of rather high degree, even the trivial algorithm is fast enough. However,

with decreasing degree of v, the effects of branching and the subsequent application of re-

duction rules become more and more important. Down to a degree of five (in general) and

for some special cases of degree four, we are still able to give a classical theoretical analy-

sis. However, for the majority of cases having maximum degree of four, even very similar

graphs can result in completely different branching vectors. These effects are extremely

hard to tackle by an analysis that combines multiple cases. The sharpest runtime bound can

be obtained by looking at each possible case individually.

4 A Computer-Aided Case Distinction

Since it is impossible to enumerate each of the millions of possible cases by hand, we use

a computer-aided case distinction. Computer-aided proofs are nothing new in the analysis

of algorithms, although they still play only a minor role in this field. One example for a

computer-aided proof is the algorithm for MAX-2SAT by Kojevnikov and Kulikov [11].

The main problem of computer-generated proofs, and maybe the cause why they are

only seldom used, is the complicated verification. While traditional mathematical proofs

can be checked rather easily — or at least, we are used to it — this does not hold for com-

puter programs. We therefore propose a framework for computer-aided proofs that allows

for an easier verification.

4.1 A General Framework for Computer-Aided Proofs

The first step in any computer-aided proof is to decide which parts of the proof should use

the aid of a computer and which parts should be be proven by hand. This step naturally

must contain a (traditional) proof of how the computer-aided parts can be incorporated into

the traditional proof. The second step is to develop a program that outputs the proof itself

and additionally a well-defined certificate that lets a reader validate the proof (on a related
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note, we refer the reader to the concept of robust and certifying algorithms, see, e.g., [3, 12]).

Finally, the proof must be independently validated using the certificate.

We use the framework for the INDEPENDENT SET problem as follows: As outlined

above, we want to use a computer-aided proof for certain graphs of maximum degree four,

all remaining cases are to be proven by a traditional analysis. Since there are infinitely

many graphs of maximum degree four, we only evaluate the branching on a finite number

of subgraphs (called graphlets, for a formal definition see below). By Theorem 13, this is

sufficient.

We developed a computer program that generates all of these graphlets and simulates

the two possible branchings (mirrors and satellites) and the subsequent application of the

reduction rules. This yields a list of corresponding branching vectors. A complete docu-

mentation of this program can be found in [13]. The certificate is given as the complete list

of graphlets generated together with their corresponding branching vectors. The certificate

and its documentation is publicly available at [10].

In order to verify our proof, one can use the certificate to check (1) whether the cer-

tificate is complete, i.e., contains each graphlet or an isomorphic one, (2) whether the cor-

responding branching vector matches the graphlet, and finally (3) whether the branching

vector yields a branching number at most 1.2132.

Finally, an independent team developed programs that validated our certificate, and

verified that each of the aforementioned claims actually holds. In the verification team,

there was a strong emphasize on clean and simple code so that the verification process can

easily be understood by third parties. A full documentation of the verification programs

can be found in [15].

We are not aware of any similarly exhaustive approaches to computer-aided proofs that

include a formal definition of goals, the proof including a certificate, and particularly an in-

dependent verification, with a full documentation of the programs available. An example

of an automated proof coming close to our framework are those for MAX-2-SAT by Ko-

jevnikov and Kulikov [11]. Their certificate however does not seem to have been verified

independently before publication.

4.2 Generating all Graphlets of Maximum Degree Four

In this section, we give the theoretical foundations for the computer-aided proof. Firstly,

we define a notion for reduction rules applied to only a well-defined subgraph of a graph

G and show that it this suffices to obtain lower bounds for the real effects of the reduction

rules.

DEFINITION 8. Let G = (V, E) be a graph and let I ⊆ V. We define RI(G) as the graph

obtained from G by applying the reduction rules applied to nodes in I only, i.e., (1) remove
u ∈ I if deg(u) ≤ 1; (2) remove u ∈ I if u dominates some u′ ∈ I; (3) remove u ∈ I if u has
adjacent satellites u1, u2 ∈ S(u) ∩ I; (4) if I contains a separator for G of size at most two,
apply Fürer’s reduction rule; and (5) apply folding to u ∈ I if N(u) ⊆ I.

From now on, we wlog assume that the reduction rules R on G are always applied in

the same order as in RI .
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LEMMA 9. Let G = (V, E) be a reduced graph of maximum degree d, I ⊆ V, U ⊆ I. Let
G′ = (V ′, E′) = RI(G \ U) and let ∆e :=

∣

∣

{

{u, v} ∈ E(G) | u ∈ I, v /∈ I
}∣

∣ −
∣

∣

{

{u, v} ∈
E(G′) | u ∈ I, v /∈ I

}
∣

∣ denote by how much the number of edges between I and V \ I

changes when applying the reduction rules to I. Then

ϕ(R(G \ U)) ≤ ϕ(RI(G \ U)) = ϕ(G′))

≤ ϕ(G)− ∑
v∈I\V′

ϕG(v) − ∑
v∈I∩V′

(

ϕG(v) − ϕG′(v)
)

− ∆e min{ϕ3/3, ∆d}.

This lemma allows us to evaluate our branching on subgraphs G[I] quite easily: After

removing nodes by branching and applying the reduction rules RI , we can simply count

how the degree of all nodes in I changed and add min{ϕ3/3, ∆d} for each removed edge

from I to the remaining graph. Note that this is the minimum value each edge contributes

to the measure.

DEFINITION 10. Let H = (I ∪ O, E) be graph, such that I ∩ O = ∅, and let v ∈ I such that
I = Ni[v], O = Ni+1(v) and deg(u) = 1 for u ∈ O. Moreover, let deg(v) ≥ deg(u) for all

u ∈ I ∪O. We call (H, v) graphlet of radius i. We call I the inner nodes of (H, v) and the set
of edges between I and O the anonymous edges.

Note that the notation of the radius i is motivated by the fact that we are only interested

in the number of edges from Ni(v) to Ni+1(v) and to which nodes in Ni(v) they are incident.

Similarly to Lemma 9, we will restrict our branching and the application of the reduction

rules to I = Ni[v].

DEFINITION 11. Let G = (V, E) be a graph, v ∈ V, and (H = (I ∪ O, E′), v) be a graphlet
of radius i. We say G contains (H, v) iff (1) I ⊆ V, (2) H[I] is an induced subgraph of G,
(3) Ni−1

G [v] = I, and (4) degG(u) = degH(u) for all u ∈ I.

Note that by these conditions, |O| = |{ {u, w} ∈ E | u ∈ I, w /∈ I }|. While this

definition is somewhat technical, the intuition behind it is rather simple: The nodes in I

form not only an induced subgraph of G, but I is only connected to G \ I via nodes in Ni
G(v).

Moreover, the degree of all nodes in I is the same in both graphs and thus the number of

edges between G[I] and G \ I as well as between H[I] = G[I] and H \ I is identical. See

Figure 3 for an example.

LEMMA 12. Let G = (V, E) be a reduced graph that contains a graphlet (H = (I ∪ O, E′), v)
and U ⊆ I. Let G′ = RI(G \ U) and H′ = RI(H \ U). Then, (1) G[V \ I] = G′[V ′ \ I], (2)

degG′(v) ≤ degH′(v) for all v ∈ I, and (3)
∣

∣

{

{u, w} ∈ E(G′) | u ∈ I, w /∈ I
}
∣

∣ ≤
∣

∣

{

{u, w} ∈
E(H′) | u ∈ I, w /∈ I

}∣

∣.

PROOF. Since we restrict the reduction rules to I, any edge that is not incident to I can-

not be affected by the reduction rules. Moreover, only nodes in I can be removed by the

restricted reduction rules. Thus, G[V \ I] = G′[V ′ \ I].

By induction over the number of applied reduction rules, we easily obtain Gi[I] = Hi[I]
and degGi

(u) ≤ degHi
(u) for all u ∈ I, where Gi (and Hi, resp.) denotes the graph G (and

H, resp.) after i reduction steps:
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Figure 3: The graph G on the left contains the graphlet (H, v) of orbit 1 on the right. Note

that u1 and u4 have a common neighbor in N2(v) in G, but not in (H, v).

1. If I contains a separator of size two in Hi, this is also a separator in Gi and vice versa.

Moreover, Gi[I] = Hi[I] implies that Fürer’s reduction rule is applied in exactly the same

way in both graphs, as the optimal independent sets of these graphs are the same. Hence,

Gi+1[I] = Hi+1[I] and degGi+1
(u) ≤ degHi+1

(u) for all u ∈ I.

2. Let u ∈ I be a node that is removed by one of the reduction rules. Removing u in

Gi and removing u in Hi removes exactly the same edges within Gi[I] = Hi[I] before the

node is removed. Thus, after the removal degGi+1
(w) ≤ degHi+1

(w) for all w ∈ I and again

Gi+1[I] = Hi+1[I].
3. Let u ∈ I be a node that is subject to folding in RI . By definition of RI , both neighbors

u1, u2 of u must belong to I. In Gi as well as in Hi, any edge {u2, w} becomes the new edge

{u1, w}, Moreover, u and u2 are removed in both graphs. Therefore, Gi+1[I] = Hi+1[I]
holds after folding u. Since only edges incident to u2 are changed, we have degGi+1

(w) ≤

degHi+1
(w) for all w ∈ I \ {u1}.

Let SH = (NHi
(u1) ∩ NHi

(u2)) \ {u} and SG = (NGi
(u1) ∩ NGi

(u2)) \ {u}. Then SH ⊆
SG, as the only common neighbors of u1 and u2 in Hi must be in I and Gi[I] = Hi[I]. But then,

degGi+1
(u1) = degGi

(u1) + degGi
(u2)− 2− |SG | and degHi+1

(u1) = degHi
(u1) + degHi

(u2)−

2 − |SH| imply degGi+1
(u1) ≤ degHi+1

(u1) by induction. We obtain
∣

∣

{

{u, w} ∈ E(G′) | u ∈ I, w /∈ I
}
∣

∣ ≤
∣

∣

{

{u, w} ∈ E(H′) | u ∈ I, w /∈ I
}
∣

∣

as a direct consequence of this.

Combining the results above, we can now conclude that is sufficient to evaluate our

branching algorithm on graphlets of some fixed radius. After branching and applying the

reduction rules to the inner nodes of the graphlet, we only need to analyze how the inner

nodes changed and how many anonymous edges are removed to obtain a branching num-

ber and (together with the remaining cases) an upper bound for the runtime of Algorithm 1.

THEOREM 13. Let G = (V, E) be a reduced graph of maximum degree d that contains the

graphlet (H = (I ∪ O, E′), v). Let U ⊆ I and H′ = RI(H \ U). Then

ϕ(G)− ϕ(R(G \ U)) ≥ ∑
u∈I∩V(H′)

ϕH(u) − ϕH′(u) + ∑
u∈I\V(H′)

ϕH(u)

+∆E(H) min{ϕ3/3, ∆d},
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where

∆E(H) :=
∣

∣

{

{u, w} ∈ E(H) | u ∈ I, w ∈ O
}
∣

∣ −
∣

∣

{

{u, w} ∈ E(H′) | u ∈ I, w ∈ O
}
∣

∣

denotes the number of anonymous edges that are removed by the reduction rules.

PROOF. Let G′ = RI(G \ U). By Lemma 9, we have

ϕ(G)− ϕ(R(G \ U)) ≥ ∑
u∈I∩V(G′)

ϕG(u)− ϕRI(G\U)(u) + ∑
u∈I\V(G′)

ϕG(u)

+∆E(G) min{ϕ3/3, ∆d},

where

∆E(G) =
∣

∣

{

{u, w} ∈ E(G) | u ∈ I, w /∈ I
}
∣

∣ −
∣

∣

{

{u, w} ∈ E(G′) | u ∈ I, w /∈ I
}
∣

∣.

Since G contains the graphlet (H, v), we have
∣

∣

{

{u, w} ∈ E(G) | u ∈ I, w /∈ I
}∣

∣ =
∣

∣

{

{u, w} ∈ E(H) | u ∈ I, w /∈ I
}∣

∣.

Thus, statement (3) from Lemma 12 yields ∆E(G) ≥ ∆E(H). By the definition of graphlets,

ϕG(u) = ϕH(u) for all u ∈ I. Moreover, Lemma 12 implies degG′(u) ≤ degH′(u) for all

u ∈ I. Hence, ϕG′(u) ≤ ϕH′(u) for all u ∈ I and we obtain the claimed estimation.

We can now use use a computer-aided proof for the following theorem:

THEOREM 14. Let G = (V, E) be a reduced graph of maximum degree four and let v ∈ V

such that deg(v) = 4 and |N2(v)| ≤ 7. Then branching on v as described in Algorithm 1
yields a branching with a branching number of at most 1.2132.

PROOF. Let H denote the set of all graphlets (H, v) of radius 2 such that deg(v) = 4 and

|N2(v)| ≤ 7. Then G contains some graphlet (H′, v) ∈ H. By Theorem 13, it is sufficient to

simulate the branching on (H′, v) and count how the node of the inner nodes changes and

how many anonymous edges are removed.

We now have a formal specification of what the computer shall compute as required by

the framework outlined in the previous section. Generating all graphlets and computing the

branching vectors yields a branching number of at most 1.2132. The certificate is publicly

available at [10] and a complete description of the generation and verification programs can

be found in [13] and [15], respectively.

5 A Traditional Analysis of the Remaining Cases

Finally, we give an traditional analysis for the remaining cases. Due to the combinatorial

explosion, it is impossible to use a computer-aided case distinction for these cases using the

methods described in the previous section.

Once the graph is cubic, we apply the algorithm for sparse graphs by Razgon [14],

which solves INDEPENDENT SET on cubic graphs in time O∗(1.0892n). However, we need

to be careful because in general, n ≥ ϕ(G), but we measure the running time in the latter.

Rewriting the statement in terms of our measure, we obtain the following bound.
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COROLLARY 15. Let G = (V, E) be a reduced cubic graph, i.e., ϕ(G) = nϕ3. Then,
Algorithm 1 solves INDEPENDENT SET on G in time O∗(1.0892n) = O∗(1.0892ϕ(G)/ϕ3) ≤
O∗(1.198ϕ(G)).

Please note that we could use a slower but simpler algorithm on cubic graphs, as long

as its runtime is at most O∗(1.096n). For increased readability, we will denote the measure

difference between G and R(G \ U), for U ⊆ V, by ∆ϕ(U) := ϕ(G)− ϕ(R(G \ U)).

For graphs of maximum degree four, we only need to handle the case where |N2(v)| ≥
8. Since a lot of nodes are affected in this case, we easily obtain a good runtime bound.

LEMMA 16. Let G = (V, E) be a reduced graph of maximum degree four. Let v ∈ V such
that deg(v) = 4 and |N2(v)| ≥ 8. Then branching on v as described in Algorithm 1 yields a
branching with a branching number of at most 1.201.

PROOF. In G \ N[v], the degree of all nodes in N2(v) is reduced by at least one. Thus,

the measure changes by at least 8 min{ϕ3, ϕ4 − ϕ3}. Let d3 = |{ u ∈ N(v) | deg(u) = 3 }|.
Then ∆ϕ({v}) = ϕ4 + d3 ϕ3 + (4 − d3)(ϕ4 − ϕ3) and ∆ϕ(N[v]) = ϕ4 + d3 ϕ3 + (4 − d3)ϕ4.

Computing all five possible branching vectors
(

ϕ4 + d3 ϕ3 + (4 − d3)(ϕ4 − ϕ3), ϕ4 + d3 ϕ3 +

(4 − d3)ϕ4

)

yields the desired bound.

Now, only the analysis for graphs of higher degree remains. A complete list of the

respective branching vectors and their corresponding branching numbers obtained in the

following lemmas can be found at [10].

LEMMA 17. Let G = (V, E) be a reduced graph of maximum degree d ≥ 5 and let v ∈ V

such that deg(v) = d. Moreover, let M(v) = ∅ and S(v) = ∅. Then branching on v as
described in Algorithm 1 yields a branching with a branching number of at most 1.2132.

LEMMA 18. Let G = (V, E) be a reduced graph of maximum degree d ≥ 5 and let v ∈ V

such that deg(v) = d. Moreover, let u ∈ M(v). Then branching on v as described in
Algorithm 1 yields a branching with a branching number of at most 1.2132.

PROOF. Let l = deg(u), S := N(v) ∩ N(u) and s := |N(v) ∩ N(u)|. Moreover, let T :=
(N(v) ∪ N(u)) \ S. Note that the degree of all nodes in S decreases by at least two in R(G \
{v, u}). Therefore, we have

∆ϕ({v, u}) ≥ ϕd + ϕl + ∑
w∈T

(ϕdeg(w) − ϕdeg(w)−1) + ∑
w∈S

(ϕdeg(w) − ϕdeg(w)−2) and

∆ϕ(N[v]) ≥ ϕd + ϕl − ϕl−s + ∑
w∈N(v)

ϕdeg(w) + (d − s) min{ϕ3, ∆d},

which yields a good enough branching vector (∆ϕ({v, u}), ∆ϕ(N[v])) for all cases.

LEMMA 19. Let G = (V, E) be a reduced graph of maximum degree d ≥ 5 and let v ∈ V

such that deg(v) = d. Moreover, let S(v) 6= ∅ and let M(v) = ∅. Then branching on v as
described in Algorithm 1 yields a branching with a branching number of at most 1.2132.
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PROOF. Note that M(v) = ∅ implies that each node in N2(v) has at most d − 2 neighbors

in N(v). Assume |S(v)| ≥ 2 or S(v) = {u} and N(u) \ N(v) 6= ∅. Since wlog V \ (N[v] ∪
N[S(v)]) 6= ∅ (otherwise the graph is of constant size), we obtain the branching vectors

(

ϕd + ∑
w∈N(v)

(ϕdeg(w) − ϕdeg(w)−1), ϕd + ∑
w∈N(v)

ϕdeg(w) + 2ϕ3 + 3 min{ϕ3/3, ∆d}
)

,

because at least two nodes in N2(v) of degree at least three are removed and at least three

edges connect the corresponding graph to the remaining graph. Otherwise, G contains a

separator of size two.

Finally, let S(v) = {u} and N(u) ⊆ N(v). Let deg(u) = d′. Since at least d − d′ nodes in

N(v) have at least two neighbors in N2(v) (otherwise, |S(v) > 1|), we obtain the branching

vector
(

ϕd + ∑
w∈N(v)

(ϕdeg(w) − ϕdeg(w)−1), ϕd + ϕd′ + ∑
w∈N(v)

ϕdeg(w) + 2(d − d′) min{ϕ3/3, ∆d}
)

.

Again, these branching vectors are good enough except if deg(v) = 5 and all neighbors

of v are of degree of five as well. But then we can branch on a neighbor v′ of v, such that

N(v′) contains a node of degree four or less, because the satellite is no mirror and hence of

degree 3.

We now easily obtain our main result:

THEOREM 20. Let G = (V, E) be a graph. Algorithm 1 solves INDEPENDENT SET on G in

time bounded by O∗(1.2132n).

PROOF. First note that for graphs of maximum degree d > 7, even the simple branching

vector
(

ϕd + ∑
w∈N(v)

(ϕdeg(w) − ϕdeg(w)−1), ϕd + ∑
w∈N(v)

ϕdeg(w)

)

is good enough. Also note that ϕi = ϕ7 for all i ≥ 8, and thus increasing the maximum

degree to values larger than 8 can never yield a worse branching vector than for a smaller

maximum degree, as N(v) contains only more neighbors and it makes no difference whether

N(v) contains node of degree 8 or a node of higher degree. A complete list of the respective

branching vectors for graphs of maximum degree 8 can be found at [10].

For graphs of maximum degree at most seven, the runtime bound follows from Lem-

mas 17, 18, and 19, Lemma 16 and Theorem 14, as well as Corollary 15.

6 Conclusion

Although it took some considerable effort to analyze the running time of our algorithm for

INDEPENDENT SET, in particular the computer-aided part and its independent verification,

we believe the results legitimate this effort. Hopefully, the proposed framework is able to

resolve some doubt regarding computer-aided proofs, especially since the certificate can

be (and already has been) used to independently validate the proof. We hope that this

approach can be used for other problems as well.
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