
International Conference on Rewriting Techniques and Applications 2010 (Edinburgh), pp. 103-118
http://rewriting.loria.fr/rta/

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN

TYPE-FREE STYLE SYSTEM F

KEN-ETSU FUJITA 1 AND ALEKSY SCHUBERT 2

1 Gunma University, Tenjin-cho 1-5-1, Kiryu 376-8515, Japan
E-mail address: fujita@cs.gunma-u.ac.jp

2 The University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
E-mail address: alx@mimuw.edu.pl

Abstract. We consider here a number of variations on the System F, that are predicative
second-order systems whose terms are intermediate between the Curry style and Church
style. The terms here contain the information on where the universal quantifier elimination
and introduction in the type inference process must take place, which is similar to Church
forms. However, they omit the information on which types are involved in the rules, which
is similar to Curry forms. In this paper we prove the undecidability of the type-checking,
type inference and typability problems for the system. Moreover, the proof works for the
predicative version of the system with finitely stratified polymorphic types. The result
includes the bounds on the Leivant’s level numbers for types used in the instances leading
to the undecidability.

1. Introduction

The type systems can be viewed as formalisms in which reasonable properties of com-
putational entities can be precisely formulated. The traditional approach distinguishes two
kinds of computational entities considered in connection with type systems, i.e., Church-
style λ-terms and Curry-style ones. The System F (λ2) of Girard-Reynolds, however, allows
of introducing intermediate families of terms between Church-style and Curry-style.

From the functional programming perspective, the Curry-style terms are interesting
since they can serve as a useful notation to define programs with little notational overhead.
However, more typing information can make the process of the program understanding eas-
ier. In order to broaden the scope of different compromise choices between these extremes,
it is useful to study intermediate systems with different amounts of notational burden.

One family of such terms is the family of domain-free terms. It arose in [HS99] as a
good target language for CPS transformations. This style corresponds to removing from the

1998 ACM Subject Classification: F.4.1.
Key words and phrases: Lambda calculus and related systems, type checking, typability, partial type

inference, 2nd order unification, undecidability, Curry style type system, Church style type system, finitely
stratified polymorphic types.

2 This work was partly supported by the Polish government grant no N N206 355836.

c© K. Fujita and A. Schubert
CC© Creative Commons Non-Commercial No Derivatives License

Proceedings of the 21st International Conference on Rewriting Techniques and Applications, Edinburgh, July, 2010
Editors: Christopher Lynch
LIPIcs - Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.RTA.2010.103

104 K. FUJITA AND A. SCHUBERT

terms the information on which types were involved in the application of the λ abstraction
rule. Type systems with quantification permit also removing the information on which
types are involved in places where the quantification rules are used, but to leave the trace
of the quantification rule itself. This gives rise to type-free systems which we consider here.

The type-checking, type inference and typability problems were thoroughly studied for
the polymorphic lambda calculus and its various fragments and variations, e.g. [Boe85,
Pfe93, Wel99, Sch98, FS00, KTU90b, Mai90]. These and other studies show that even
a little bit more polymorphism than in ML gives rise to an undecidable system. It is,
however, still unknown if the polymorphic lambda calculus in the predicative formulation
(i.e. a system where types are divided into levels and a variable of a particular level can
be substituted for by types of a lower level), the so called finitely stratified polymorphic
lambda calculus [Lei91], is decidable with this regard.1 The current paper gives a bound
on the undecidable cases of the predicative system. The proof of the undecidability for
the type-free λ2, we present here, works in the system with limited level number (level 1
in case of type-checking and type inference, and level 2 in case of typability). This proof,
however, cannot be adapted easily to the Curry-style λ2 as it is based on a reduction
from second-order unification, while the Curry-style requires a technique which is based on
semiunification [Wel99, KTU90a].

Although this papers gives negative results, it provides an interesting perspective to the
investigation of type systems as it presents a system with light-weight annotation burden,
but which uses second-order unification as the basis for type reconstruction instead of
the semiunification. This has the advantage that the research on higher-order unification
is much more active and gives more opportunities for type systems with decidable type
reconstruction procedures.

This paper is structured as follows. We introduce the type systems to deal with in
Section 2. Section 3 is devoted to the undecidability of the restricted 2nd order unification
problem. The undecidability proof for the type-free λ2 systems is presented in Section 4.

2. Second-order Type Systems

We consider second-order polymorphic systems λ2 of Girard-Reynolds in the type-free
style.

2.1. Polymorphic System λ2 (System F)

The polymorphic system λ2 (System F) employs the connective → and second-order
universal quantification ∀ to form expressions called λ2-types:

A ::= X | (A → A) | ∀X.A

The contexts of the system (written as Γ,Γ′,Γ1 etc.) are as usual finite mappings from term
variables to types. The domain Dom(Γ) of a context Γ is the set of the term variables the
context assigns types to. The terms of λ2 in the type-free style are defined as follows. The

1To be precise, the construction of Wells [Wel99] gives rise to undecidable type-checking in the Leivant’s
level 2, the remaining cases i.e. type inference and typability, in general, and type-checking in level 1 are to
our knowledge open.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 105

system is an intermediate system between Church and Curry styles, where the symbols []
and Λ mark applications of the ∀ rules without the type information in terms.

M ::= x | (λx.M) | (MM) | (Λ.M) | (M [])

The inference rules are as follows:

Γ, x :A ⊢λ2tf x : A
(var)

Γ, x :A1 ⊢λ2tf M : A2

Γ ⊢λ2tf λx.M : A1→A2
(→I)

Γ ⊢λ2tf M1 : A1 → A2 Γ ⊢λ2tf M2 : A1

Γ ⊢λ2tf M1M2 : A2
(→E)

Γ ⊢λ2tf M : A

Γ ⊢λ2tf Λ.M : ∀X.A
(∀I)⋆

Γ ⊢λ2tf M : ∀X.A

Γ ⊢λ2tf M [] : A[X := A1]
(∀E)

where (∀I)⋆ denotes the eigenvariable condition X 6∈ FV(Γ).
The predicative version of the system divides the type variables into levels [Lei91].2 We

write X(k) to mark that X is in the level k. Then, the types in the level 0 and k for k > 0
are defined as follows:

A(0) ::= X(0) | (A(0) → A(0))

A(k) ::= X(k) | A(k−1) | (A(k) → A(k)) | ∀X(k−1).A(k)

The minimum level of a type A is denoted as lvl(A). Now, the rules of the predicative
type-free λ2 are as usual except the rules for the quantification:

Γ ⊢pλ2tf M : A

Γ ⊢pλ2tf Λ.M : ∀X(k).A
(∀I)⋆

Γ ⊢pλ2tf M : ∀X(k).A lvl(A1) ≤ k

Γ ⊢pλ2tf M [] : A[X(k) := A1]
(∀E)

where (∀I)⋆ denotes the eigenvariable condition X 6∈ FV(Γ).
We say that a derivation of a judgement is done within level k, if for every judgement

Γ ⊢ M : A in the derivation, we have lvl(A) ≤ k and lvl(B) ≤ k for all types B occurring
in Γ.

On the other hand, λ2 in the Curry style has well-known rules as follows:

Γ ⊢λ2C M : A

Γ ⊢λ2C M : ∀X.A
(∀I)⋆

Γ ⊢λ2C M : ∀X.A

Γ ⊢λ2C M : A[X := A1]
(∀E)

A predicative version of λ2 in the Curry style is also defined for stratified types:

Γ ⊢pλ2C M : A

Γ ⊢pλ2C M : ∀X(k).A
(∀I)⋆

Γ ⊢pλ2C M : ∀X(k).A lvl(A1) ≤ k

Γ ⊢pλ2C M : A[X(k) := A1]
(∀E)

Then a type erasing map from terms in type-free style to those in Curry style is naturally
defined so that |Λ.M | = |M | and |M []| = |M |. A type flatting map from stratified types to

non-stratified ones is also defined so that |X(k)| = X and |∀X(k).A| = ∀|X(k)|.|A|. We have
the following basic properties between Curry and type-free styles; and stratified and flatted
types.

Proposition 2.1 (Erasing, lifting, flatting). Let a pair of systems (X,Y) = (λ2tf, λ2C) or
(pλ2tf, pλ2C). Let (Z,W) = (pλ2tf, λ2tf) or (pλ2C, λ2C).

2Levels should not be confused with type ranks [Lei83, KW94] defined as: rank(A) = 0 when A contains
no quantifier, rank(A1 → A2) = max(rank(A1) + 1, rank(A2)), and rank(∀X.A) = rank(A). For instance,
(∀X.(X → X)) → ∀Y.Y has rank 2, but has level 1 if lvl(X) = lvl(Y) = 0. Note also that the level here is
different from the stratified level in [GR94].

106 K. FUJITA AND A. SCHUBERT

Term\System pλ2tf λ2tf pλ2C λ2C

(λx.xx)(λx.xx) No No No No
(λx.xx)(λx.xyx) No No No Yes
λx.xx No No Yes Yes
λx.x[]x No Yes - -
λx.x[](x[]) Yes Yes - -

Figure 1: Typability for example terms in type-free and Curry style disciplines

(1) If Γ ⊢X M : A then Γ ⊢Y |M | : A.
(2) If Γ ⊢Y M : A then there exists an X-term N such that |N | ≡ M and Γ ⊢X N : A.
(3) If Γ ⊢Z M : A then Γ ⊢W M : |A|.

Notice that the systems λ2tf and pλ2tf, unlike λ2C and pλ2C, are syntax directed in
the sense that the form of a term determines exactly which rule should be the last one in
a derivation of its type. Still, in case of the (∀E), we do not know which types are used in
the particular instance of the rule.

We show simple examples of terms in the systems on Figure 1, where “Yes” means ty-
pable but “No” untypable in the corresponding system (the second term is due to Urzyczyn
[Lei91]).

The type checking problem (TCP) is the problem: given a term M , a type A, and a
context Γ, is Γ ⊢ M : A derivable? The type inference problem (TIP) is the problem: given
a term M and a context Γ, is there a type A such that Γ ⊢ M : A is derivable? Finally, the
typability problem (TP) is the problem: given a term M , are there a context Γ and a type
A such that Γ ⊢ M : A is derivable?

Note that in case of the predicative system we may consider each of the problems above
in two versions: non-bounded ones (TCP, TIP, TP) in which we ask about the derivability
in the predicative system in general and k-bounded ones (TCPk, TIPk, TPk) in which we
are given data that falls within the level k and want an answer if a derivation can be done
within the level k exclusively.

In general, there is no direct relation between the undecidability of TCP (or TIP, or
TP) and the undecidability of TCPk. In particular the instances of TCP have no fixed
level so the identical translation does not give the undecidability. The reduction in the
other direction is not straightforward either as the systems do not enjoy the conservativity
property.

Proposition 2.2. For each k there are context Γ, term M , and a type A such that Γ and
A are in level k, Γ ⊢pλ2tf M : A is derivable, but there is no derivation for Γ ⊢pλ2tf M : A
in level k.

Proof. We adapt the terms proposed by Urzyczyn (see [Lei91]). Let the term M1 ≡
λx.x[](x[]) and Mk+1 ≡ λy.y[]Mk(y[]). The term Mk+1 is typable in level k + 1 but is

not typable in level k. Consider now the judgement ⊢ (λx.λy.y)Mk+1 : X(k) → X(k). This
term is typable in level k + 1 only, but is not typable in level k while the context and the
type X(k) are in level k.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 107

However, a slightly weaker version of conservativity indeed holds for the systems. We
say that a type-free λ2 term M is in normal form if it has one of the following shapes:3

(1) xM1 . . .Mn (n ≥ 0) where Mi is either a term in normal form or [], or
(2) λx.M where M is in normal form, or
(3) Λ.M where M is in normal form.

Proposition 2.3. Let M be a term in normal form and Γ, A be in level k. If Γ ⊢pλ2tf M : A
is derivable then it is derivable in level k.

Proof. Induction on the term M in normal form.

2.2. Connections with Partial Type Reconstruction

The problem of partial type reconstruction is a crucial problem for functional program-
ming languages. Consider the following situation. We would like to write a generic function
which transforms an existing polymorphic function so that the resulting function prints
out some textual information. Currently, a definition of such a function could look like as
follows (in the syntax of OCaml)

let addInfo = fun f x -> print "we call polymorphic"; f x;;

However, this is not possible in functional languages such as OCaml as the functional
arguments cannot be polymorphic. Still, extension of the language to make such definitions
possible is apparently useful. One of the drawbacks of the notation above is that it breaks
the current convention that an application of a function is always monomorphic. Therefore,
it is useful to warn a programmer that a particular function is polymorphic, for instance in
the following fashion:

let addInfo = fun f x -> print "we call polymorphic"; (f[]) x ;;

Since the functional programming languages give the programmer a freedom of giving the
typing information wherever it is suitable for readability or comprehensiveness. Therefore,
the functional programming languages require not only the procedures to decide the type
inference, but stronger procedures that tackle the partial type reconstruction problem where
some of the typing information is provided and some is omitted.

Along the lines of Boehm [Boe85], Pfenning [Pfe93] has proved that the partial type
reconstruction problem for the pure polymorphic λ2 is equivalent to the second-order unifi-
cation problem as far as decidability is concerned. This means the problem is undecidable.
He also proved the undecidability result for the predicative system. Our problem TIP for
type-free λ2 can be regarded as a restricted instance of the partial type reconstruction
problem in which the instances cannot contain types in terms, but may contain placehold-
ers where types should be instantiated in type derivations. The question of undecidability
for terms in this form has been mentioned in the paper [Pfe93] and we confirm here that the
problem is undecidable. Note that this strategy is very practical as the additional typing
information in the terms is provided very rarely in real functional programs.

In [FS00], we demonstrated that TIP is undecidable for the predicative domain-free λ2
by a reduction from the second-order unification problem. The problem TIP here for type-
free λ2 is a very restricted form of both problems. In general the proof methods applied
in [Pfe93, FS00] do not work for the problem for the type-free style, since the previous

3The study of appropriate notion of reduction goes beyond the main topic of the paper.

108 K. FUJITA AND A. SCHUBERT

methods essentially refer to type information which is to be erased in the type-free case.
Even the direct application of the unification for flat forms to the construction of Pfenning
does not bring the main result of the current paper.

It is worth pointing out that the results of [Pfe93, Boe85] indicate that it is impossible
to devise an algorithm which allows the authors of functional programs to freely insert and
omit the type annotations in the full polymorphic type discipline. We strengthen the result
in such a way that already the strategy of showing where the second-order polymorphism
is used, but omitting the information on how it is used gives rise to undecidability. Still, we
hope that the existing decidable cases of the second-order unification can bring systems with
decidable type related problems and the resulting systems will have the pragmatic advantage
that the uses of polymorphisms are clearly marked in the source code of programs.

3. Undecidability of Restricted Unification

The proofs of undecidability for type-free system are done as a reduction of a strongly
restricted version of the 2nd order unification problem to the problems. The version of the
unification has been introduced in [FS09, FS]. The proof of the main theorem of the section
is in [FS09].

We define here expressions for unification problems. We assume that a countably infinite
set of type variables with level k is divided into three subsets: The first one contains first-
order variables denoted by X,Y, . . ., the second one constants denoted by C,D, . . ., and the
third one second-order variables denoted by F

n,Gn, . . . where the superscript n indicates
their arity. The expressions we deal with in unification equations have the following form:

A,B ::= X | C | (A → B) | FnA1 · · ·An

Whenever it does not lead to confusion, we drop the superscript with arity. The expressions
which do not contain second-order variables are called first-order expressions.

An instance of the unification problem consists of a set of equations

E = {A1
.
= B1, . . . , An

.
= Bn}.

We say that the instance E is solvable if there exists a substitution S such that S(A1) =
S(B1), . . . , S(An) = S(Bn). We write Dom(S) for the domain of S. A set of free variables
in expressions of unification problems is defined as follows:

FVu(C) = ∅; FVu(X) = {X}; FVu(F) = {F}; FVu(A → B) = FVu(A) ∪ FVu(B).

We have to define a restricted second-order unification problem which can fit into the
form of type constraints that arise in the type-free type system and is still undecidable.
The basic idea here is to exploit the observation that the rules (∀E) work in a way similar
to the application of a second-order expression to an argument. As the type-free systems
omit from terms the information on an expression to which a second-order term is applied,
we have to restrict the arguments of second-order variables so that the arguments can take
up any form (monadic restriction below).

Definition 3.1 (Flat form). An instance E of the unification problem is in flat form when
it complies with all three restrictions below:

(1) Root restriction: Second-order variables occur only at root positions.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 109

(2) Monadic restriction: If second-order variable occurs as FA1 · · ·An then either all
Ai are constants or all Ai are first-order variables. Moreover, the symbols Ai occur
only in the equation where FA1 · · ·An occurs.

(3) Constant restriction: Each time a second-order variable F is applied to a vector
X1, . . . , Xn of first-order variables as FX1 · · ·Xn

.
= A, there is a set of pairwise

distinct constants C1, . . . , Cn such that there is exactly one equation FC1 · · ·Cn
.
=

B ∈ E, where C1, . . . , Cn occur, all C1, . . . , Cn occur in B, and the positions where
the constants occur in B exist in A.

The idea similar to the one behind root restriction and monadic restriction can be
found in [Ami90]. The constant restriction is necessary as it provides a clear indication on
which positions correspond to the arguments of second-order variables. The presence of the
constants can be simulated in the process of type inference by means of the (∀I) rules.

Theorem 3.2 (Undecidabiliy of unification with flat form). The problem of deciding if a
given set of equations E in the flat form can be solved is undecidable.

Proof. From a reduction of the unification of simple instances [Sch98, Sch01, LV00] to the
unification of equations in the flat form. See [FS09, FS] for the details of the proof.

The translation in the theorem above applied to the particular simple instances that give
rise to the undecidability results in instances which contain 10 equations with second-order
variables. Six of them involve one second-order variable F, while the other four another
one G. To facilitate the understanding of the proofs below we present here the equations
with second-order variables (omitting the other ones) that arise in the proof of Theorem 3.2:

FX1
1 . . . X

1
n

.
= XFA1...An

→ A1 → · · · → An → o

FC1
1 . . . C

1
n

.
= X ′

FA1...An
→ C1

1 → · · · → C1
n → o

FX2
1 . . . X

2
n

.
= XFA′

1
...A′

n
→ A′

1 → · · · → A′
n → o

FC2
1 . . . C

2
n

.
= X ′

FA′
1
...A′

n

→ C2
1 → · · · → C2

n → o

FX3
1 . . . X

3
n

.
= XFA′′

1
...A′′

n
→ A′′

1 → · · · → A′′
n → o

FC3
1 . . . C

3
n

.
= X ′

FA′′
1
...A′′

n

→ C3
1 → · · · → C3

n → o

GX4
1 . . . X

4
m

.
= YGB1...Bm

→ B1 → · · · → Bm → o

GC4
1 . . . C

4
m

.
= Y ′

GB1...Bm
→ C4

1 → · · · → C4
m → o

GX5
1 . . . X

5
m

.
= YGB′

1
...B′

m
→ B′

1 → · · · → B′
m → o

GC5
1 . . . C

5
m

.
= Y ′

GB′
1
...B′

m

→ C5
1 → · · · → C5

m → o

(3.1)

where F, G are fresh second-order variables of arity n,m, resp.; X with annotations and Y

with annotations are fresh first-order variables; Ci
j with appropriate indices are subject to

the constant restriction; and o is a distinguished type constant. We show here the equations
in pairs (see case (3) in Definition 3.1).

4. Undecidability of Type Related Problems for Type-free System

Now, we embark on the reduction of the unification for the instances in the flat form to
the type related problems. For a set of equations E we provide a λ-term M such that if a
type derivation for M exists then a unifier S for E can be extracted from it. The main idea
of the construction comes from [FS09, FS], and can be traced back to [Pfe93]. However, we

110 K. FUJITA AND A. SCHUBERT

do not follow the latter construction in detail as we want to obtain a tight bound on type
levels and avoid the occurrence of type variables in terms. The general idea of the approach
here is that the shape of a type derived for a variable xA occurring in M , related by the
translation to a subexpression A in the set of equations E, strictly corresponds to the result
of the substitution S(A).

We simply write An → B for A → · · · → A → B with n occurrences of A, and MNn

for MN · · ·N with n applications to N .
Since we have a countably infinite set of term variables of λ-calculus, we can assume

a one-to-one mapping between expressions of unification problems and term variables of λ-
terms. Based on this, we write term variables xA and yA corresponding to an expression A

of a unification problem. For instance, we have term variables xX and yX from a first-order
variable X, and similarly term variables xC and yC from a constant C. In particular, the
distinguished constant o gives rise to the term variable xo.

4.1. Enforcing the Shape of First-order Terms

To achieve the goal sketched above, we have to provide a translation from instances of
the second-order unification to terms which enforce particular forms of solutions. We start
with enforcing of the shape of terms that do not involve second-order variables.

Terms which involve the variables associated with subexpressions of a given unification
instance need to be put together in a single λ-term. To this end we use special variables
that allow to glue terms. They are contained in a context

Γo = {xo :o, yo1 :o → o, . . . , yon :o
n → o}

for a fixed n = 21, where yoi are fresh term variables and o is the distinguished constant.
We often shorten yoi to yo when this does not lead to confusion. The following proposition
holds.

Proposition 4.1. There is a term Mo such that dom(Γo) ⊆ FV(Mo) and for each Γ if
Γ ⊢ Mo : A is derivable and Γ contains xo : o then Γo ⊆ Γ and A = o.

Moreover, if the level of o is k ≥ 0 then the derivation can be done in level k.

Proof. Observe that a term yoxo forces the argument of yo to be of type o then yo(yoxo)
forces also the result of yo to be of type o so yo : o → o. The details of the construction and
proof are left to the reader.

The idea of enforcing employed in the sketch of the proof above can also be used below.

Definition 4.2 (Encoding of first-order expressions). For a first-order expression A, we
define a λ-term MA, as follows:

(1) case A ≡ X (first-order variable): the term MX ≡ yo(yXxX),
(2) case A ≡ C (constant): the term MC ≡ yo(yCxC),
(3) case A ≡ (A1 → A2): the term

MA1→A2
≡ yo (yA2

(xA1→A2
xA1

)) (yA2
xA2

)MA1
MA2

.

Note that FV(MA) ⊆ Dom(Γo) ∪ {xB, yB | B is subexpression of A}.
The encoding in Definition 4.2 is constructed in such a way that the types of vari-

ables xA follow the structure of the corresponding expression A. In addition, the encoding
gives enough freedom to enable the operation of first-order substitutions. This is precisely
expressed by the following lemma.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 111

Lemma 4.3. For any substitution S, with Γ ⊇ Γo defined by

• Γ(xB) = S(B),
• Γ(yB) = S(B) → o

for all subexpressions B of A, we have that Γ ⊢ MA : o is derivable.
Moreover, when variables in image of S are assigned level k then the derivation can be

done in level k.

Proof. The proof is immediate by Definition 4.2 since S(A1 → A2) = S(A1) → S(A2).

We can now present the way how the first-order unification is encoded in λ-terms.

Definition 4.4 (Encoding of first-order unification). Let E be a finite set of equations of
first-order unification. In case E = ∅, we define ME ≡ xo. In case E = {A1

.
= B1} ∪E0, we

define ME to be:
ME ≡ yo5 (yA1

xA1
) (yA1

xB1
) MA1

MB1
ME0

.

In the definition above, we use MA1
,MB1

to encode the shape of the expressions A1, B1

respectively. This is done in such a way that xA1
, xB1

have the types S(A1), S(B1) for some
substitution S. We can now force them to be equal by placing xA1

, xB1
as arguments to the

same variable yA1
. The rest of the set of equations can be taken into account in the same

fashion in the subterm ME0
. Note that

FV(ME) ⊆ {xB, yB | B is subexpression of some expression in E} ∪Dom(Γo).

The lemma below relates the solutions of first-order unification with derivations in the
type-free System F.

Lemma 4.5. Let E be a finite set of equations of first-order unification and S a substitution.
The substitution S solves E if and only if there is a context Γ ⊇ Γo such that Γ ⊢ ME : o
is derivable in level k and Γ(xB) = S(B), Γ(yB) = S(B) → o for each subexpression B of
expressions in E.

Proof. The proof is by induction on the size of E. The case E = ∅ holds trivially. Consider
now the case E = {A1

.
= B1} ∪ E0.

(⇒) Suppose that E is solvable under S, i.e., S(A1) = S(B1) and S solves E0. From
Lemma 4.3, we have that ΓS ⊢ MA1

: o in level k and Γ′

S ⊢ MB1
: o are derivable for some

ΓS ,Γ
′

S ⊇ Γo. By induction hypothesis we have in addition that Γ′′

S ⊢ ME0
: o is derivable.

We may assume that domains of ΓS ,Γ
′

S ,Γ
′′

S are minimal, i.e., they contain the domain of
Γo and the free variables in MA1

, MB1
, ME0

respectively. In this case, the intersection of
domains of ΓS , Γ

′

S , Γ
′′

S contains only the domain of Γo and the variables of the form xB, yB.
Therefore, each of the contexts assigns the same type to the variables. In this light we
can let Γ = ΓS ∪ Γ′

S ∪ Γ′′

S and preserve the derivability of Γ ⊢ MA1
: o, Γ ⊢ MB1

: o, and
Γ ⊢ ME0

: o. Since S solves E we have Γ(xA1
) = S(A1) = S(B1) = Γ(xB1

), and therefore
Γ ⊢ yA1

xA1
: o and Γ ⊢ yA1

xB1
: o are derivable. Now, we can easily assemble the derivation

for Γ ⊢ ME : o.
(⇐) Suppose that Γ ⊢ ME : o is derivable (in level k) for some context Γ ⊇ Γo

with Γ(xB) = S(B), Γ(yB) = S(B) → o. This means that Γ ⊢ ME0
: o is derivable. The

induction hypothesis gives immediately that S solves E0. We have also that Γ ⊢ MA1
: o and

Γ ⊢ MB1
: o are derivable. As yA1

is applied to both xA1
and xB1

, we have Γ(xA1
) = Γ(xB1

).
Then we can infer that S(A1) = Γ(xA1

) = Γ(xB1
) = S(B1). Hence all A

.
= B ∈ E are

solvable under S.

112 K. FUJITA AND A. SCHUBERT

4.2. Enforcing the Shape of Terms with Second-order Variables

Now that we know how to translate the equations with no second-order variables, we
have to provide a translation for the equations that contain the variables. In order to make
the presentation more concrete, we provide here a translation for the particular equations
that result from the translation of the simple-instances to the equations in the flat form.
Recall that the translation gives two pairs of equations for each second-order variable and
the undecidable instances of the second-order unification of simple instances contain two
variables F and G. We provide the following encoding for equations with G only, displayed in
(3.1) on page 107. The case with F follows exactly the same pattern. See also Definition 3.1
and Theorem 3.2. We refrain from presentation of a general definition for equations with
second-order variables as such a presentation is involved and obscures the main idea of the
encoding. We believe that it is easier for a reader to understand the idea of the proof when
it is presented in this more concrete fashion.

As a useful shorthand, we define a λ-term M []n+1 ≡ (M [])[]n and M []0 ≡ M , which
means successive application of (∀E). We also define a λ-term Λn+1.M ≡ Λn.(Λ.M) and
Λ0.M ≡ M , which means successive application of (∀I).

Definition 4.6 (Encoding of second-order unification). For a set of equations E such that
the set E\E′ consists of the equations in the flat form containing the second-order variable
G of arity n:

GX1 · · ·Xn
.
= B1, GC1 · · ·Cn

.
= B2, GY1 · · ·Yn

.
= B3, GC ′

1 · · ·C
′
n

.
= B4,

where B1 ≡ (X → A1 → · · · → An → o), B3 ≡ (Y → A′
1 → · · · → A′

n → o),
B2 ≡ (X ′ → C1 → · · · → Cn → o), and B4 ≡ (Y ′ → C ′

1 → · · · → C ′
n → o);

we define a λ-term ME as

yo (yB1
xB1

) (yB1
(xG[]

n)) (yB2
xB2

) (yB2
(xG[]

n))
(yB3

xB3
) (yB3

(xG[]
n)) (yB4

xB4
) (yB4

(xG[]
n))

(yGxG) (yG(Λ
n.λz1 . . . λzn+1.xo)) MB1

MB2
MB3

MB4
ME′

(4.1)

where xo is as in Γo; MB1
, . . . ,MB4

are encodings of the expressions B1, . . . , B4; and ME′

is an encoding of the set E′ of equations. In case E = ∅, ME = xo.

Note that

FV(ME) ⊆ {xB, yB | B is subexpression of some first-order expression in E}∪
{xH, yH | H is a second-order variable in E} ∪Dom(Γo).

Let us discuss a few issues concerning the construction of the term ME . First note that
Γo(yo) = o15 → o and that all the 15 arguments from (yB1

xB1
) through ME′ must have

the same type o. Now, the variables yD for D ∈ {B1, B2, B3, B4,G} are used to enforce
that the left hand sides of the equations are equal to the right hand ones. The type of the
variable xG is supposed to be the result of the solution on the variable G. The monadic
restriction allows us to simulate the work of variables X1, . . . , Xn and Y1, . . . , Yn as well as
the constants C1, . . . , Cn and C ′

1, . . . , C
′
n by means of the type hole application xG[]

n. We
exploit the knowledge of the shape of B2, B4 that we have from (3.1) on page 107 to enforce
that the constants C1, . . . , Cn and C ′

1, . . . , C
′
n are used in the quantifier eliminations when

yD is applied to xG[]
n (where D = B1, B2, B3 or B4). The term to which yG is applied

enforces that the type of xG has exactly n universal quantifiers in its head and (n + 1)

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 113

arrows inside. Note also that the term M ′

E includes a similar encoding for the variable F.
That encoding requires the use of o21 → o as we have 6 equations with F

4.
For a second-order substitution S we define Γo,S as the smallest with regard to ⊆ context

such that Γo ⊆ Γo,S , Γo,S(xB) = S(B), and Γo,S(yB) = S(B) → o for each subexpression B

of a first-order expression in E, and Γo,S(xG) = ∀X1, . . . , Xn.S(G)X1 · · ·Xn and Γo,S(yG) =
(∀X1, . . . , Xn.S(G)X1 · · ·Xn) → o for each second-order variable G occurring in E. Observe
that it is possible to assign levels to type variables in Γo,S so that the context as well as o
are in level k + 1 for each k ≥ 0. We further work with such a version of the context.

Proposition 4.7. Let E be the equations in the flat form above and S a substitution such
that each type variable has level k. (1) If the substitution S solves E then there is a context
Γ ⊇ Γo,S such that Γ ⊢ ME : o is derivable in level k + 1. (2) If there is a context Γ ⊇ Γo,S

such that Γ ⊢ ME : o is derivable in level k+ 1, then there is a substitution S♯ such that S♯

solves E and that S♯ differs from S only on variables to which the second-order variables
are applied.

Proof. We assume here the notation as in Definition 4.6. The proof is by induction on the
size of E. In case E = ∅ the claim holds trivially.

(1) Suppose that E is solvable under S, where each expression is constructed from type
variables in level k. We show now that Γo,S ⊢ ME : o is derivable in level k + 1. First,
observe that Γo,S and o are in level k+1. Lemma 4.3 gives that MB1

, MB2
, MB3

, and MB4

are typable to o under appropriate contexts and as the contexts coincide with Γo,S on the
variables which occur free in the terms we may assume that the terms are typable to o under
Γo,S . Similar reasoning starting with the use of Lemma 4.5 (in case E′ is first-order) or
the induction hypothesis (in case E′ is second-order) gives that Γo,S ⊢ ME′ : o is derivable.
Now, the derivability of Γo,S ⊢ yDxD : o for D ∈ {B1, B2, B3, B4,G} follows immediately
from the definition of Γo,S . As the lemmas state, the derivations can be done in level k+1.

Now, for the proof of derivability of the terms in the form of yD(xG[]
n) for D ∈

{B1, B2, B3, B4}, we use in the type instantiations in places marked by [] that are indicated
by appropriate equations, i.e. S(X1), . . . , S(Xn); C1, . . . , Cn; S(Y1), . . . , S(Yn); C

′
1, . . . , C

′
n,

respectively. Then the derivability in level k+ 1 follows from the definition of Γo,S and the
fact that S unifies the equations displayed in Definition 4.6.

For the proof of derivability of Γo,S ⊢ yG(Λ
n.λz1 . . . λzn+1.xo) : o, observe that S(G) =

λx1 . . . λxn.U1 → · · · → Un+1 → B for some U1, . . . , Un+1 and B. Otherwise it would be
impossible to unify both the equation GX1 · · ·Xn

.
= B1 and GC1 · · ·Cn

.
= B2 by the constant

restriction. Moreover, B = o as the number of arguments is n and both B1 and B2 end
with o. Therefore, we can assign the types U1, . . . , Un+1 to z1, . . . , zn+1 in λz1 . . . λzn+1.xo.
Now, the derivability in level k+1 follows from the definition of Γo,S and from the fact that
all the steps above are done with help of types from Γo,S , the derivation is in level k + 1.

Since all arguments of yo are typable to o in Γo,S and yo : o
15 → o is in Γo. We obtain

a derivation for Γo,S ⊢ ME : o in level k + 1.
(2) Suppose, now, that Γ ⊢ ME : o is derivable (in level k + 1) for some Γ ⊇ Γo,S . As

FV(ME) = Dom(Γo,S), we can assume that Γo,S ⊢ ME : o. Now, we can prove that S is
indeed a solution of E. Note first that either by induction hypothesis or by Lemma 4.5,
S solves E′. As yG is applied to both xG and Λn.λz1 . . . λzn+1.xo, they have the same
types. The type of Λn.λz1 . . . λzn+1.xo (and at the same time the type of xG) must be of

421 = 12 + 2 + 6 + 1

114 K. FUJITA AND A. SCHUBERT

the form ∀X1 . . . ∀Xn.(U1 → · · · → Un+1 → o) (*) (as the type system is syntax directed).
From the derivability we obtain that S(B1) = S(G)D1 · · ·Dn and S(B2) = S(G)D′

1 · · ·D
′
n

for some D1, . . . , Dn, D
′
1, . . . , D

′
n, because of the way how yB1

, yB2
are used. Note that B2

contains n positions (the positions of C1, . . . , Cn) at which terms differ from the terms
in the corresponding positions in B1. Moreover, all these positions occur in the type
marked as (*). Therefore, the only possible way to ensure that the equalities above hold is
when variables occupy the positions in the type of xG. Then it follows that the sequence
D′

1, . . . , D
′
n is a permutation of C1, . . . , Cn. We can now permute the application of the

type instantiations so that the constants are applied in the order C1, . . . , Cn. Then, the
arguments D1, . . . , Dn must be permuted in the same way. Then, however, Ai must oc-
cur in S(B1) = S(G)Di1 · · ·Din where Ci is used in S(B2) = S(G)C1 · · ·Cn for each fixed
i = 1, . . . , n. This is because Ai occurs in B1 in position where Ci occurs in B2. In the end,
we obtain that S(B1) = S(G)S(A1) · · ·S(An) and S(B2) = S(G)C1 · · ·Cn. As variables
X1, . . . , Xn occur only in GX1 · · ·Xn, we may change S(Xl) to Dil and in this way obtain
S♯,1. A similar reasoning may be used to infer the equalities S(B3) = S(G)Y1 · · ·Yn and
S(B4) = S(G)C ′

1 · · ·C
′
n. In this way, we obtain the required solution S♯ to the whole E.

This ends the technical lemmas which are enough to prove undecidability of TCP and
TIP.

4.3. Enforcing the Content of Contexts for TP

When TCP and TIP are considered, a context is a part of the initial data so we can
provide one which is useful for the purpose of undecidability proof. This is no longer the
case when the goal is the undecidability of TP. In particular, we have to make sure that the
types of different constants used in unification expressions are indeed different. Moreover,
the expressions from the substitution must not occur neither in the context nor in the
resulting type. This can be obtained with the help of the following construction.

The first step is to turn the type variables which correspond to constants in the unifica-
tion expressions into quantified variables. Let ~xC = {xC1

, . . . , xCm
}, where all the constants

in E subject to the constant restriction are collected. Let ~y = (FV(ME)∪FV(Mo))\({xo}∪

~xC) and M̂E be the following term:

M̂E ≡ f(Λm+1.λxC1
. · · ·λxCm

.λxo.K̂(λ~y.yoMEMo))

where Mo is as in Proposition 4.1 and K̂ = λx.g. Note that FV(M̂E) = {f, g}. Let

ΓE = {f : (∀C
(k)
1 . · · · ∀C(k)

m .∀C
(k)
m+1.(Ci1 → · · · → Cim+1

→ W1)) → W2, g :W1}

where W1 and W2 are any types in level k + 1 that do not use C1, . . . , Cm+1, ΓE(f) is in
level k + 1 and i1, . . . , im+1 is a permutation of 1, . . . ,m+ 1.

With help of the term M̂E we reduce the problem of making C1, . . . , Cm different to the
problem to enforce the particular shape of a type for f . This is guaranteed by the following
lemma.

Proposition 4.8. Let E be the equations in the flat form above and k ≥ 0. The problem
E is solvable if and only if ΓE ⊢ M̂E : W2 is derivable.

Moreover, if E is solvable the derivation of ΓE ⊢ M̂E : W2 can be done in level k + 1.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 115

Proof. (⇒) If E is solvable by S then we can use the substitution as in Proposition 4.7
to derive Γo,S ⊢ ME : o in level k + 1. As Γo ⊆ Γo,S , we can also derive Γo,S ⊢ Mo : o
by Proposition 4.1. Since ME ,Mo are typable to o and Γo,S contains types of level k + 1
we can derive a type B for M∗ ≡ λ~y.yoMEMo which is in level k + 1. Let us define
ΓC = {xC : C | xC ∈ ~xC} ∪ {xo : o}. We can directly check that M∗ is typable in ΓE ∪ ΓC

and all of the derivation of ΓE ∪ ΓC ⊢ M∗ : B can be done in level k + 1. Now, we can do
the type inference for K̂ = λx.g : B → W1 which allows us to derive ΓE ∪ ΓC ⊢ K̂M∗ : W1.
Then we can abstract all the variables from ΓC and then do the type abstraction for the
type variables that serve as constants i.e. C1, . . . , Cm, o. Observe, that the way we use
Proposition 4.7 means that C1, . . . , Cm, o are in level k. With this in mind we can see that
it is possible to derive in level k + 1 the type W2 for f(Λm+1.λxC1

. · · ·λxCm
.λxo.K̂M∗),

which is the required result.
(⇐) Suppose that ΓE ⊢ M̂E :W2 (in level k + 1). From ΓE(f), we have

ΓE ⊢ Λm+1.λxC1
. · · ·λxCm

.λxo.K̂(λ~y.yoMEMo)

: ∀C
(k)
1 . · · · ∀C

(k)
m .∀C

(k)
m+1.(Ci1 → · · · → Cim → Cim+1

→ W1).

Then we have ΓE ⊢ λxC1
. · · ·λxCm

.λxo.K̂(λ~y.yoMEMo) : Ci1 → · · · → Cim → Cim+1
→ W1,

where C1, . . . , Cm+1 are fresh and pairwise distinct type variables from the variable condition
of (∀I). Further, we obtain

Γ ≡ ΓE ∪ {xC1
:Ci1 , . . . , xCm

:Cim , xo :o} ⊢ K̂(λ~y.yoMEMo) : W1,

and then we have Γ ⊢ λ~y.yoMEMo : B
′ for some type B′. Hence, we can derive Γ ⊢ Mo : o,

which implies that Γo ⊆ Γ by Proposition 4.1. We can now define a substitution S as
S(X) = B for all xX : B ∈ Γ and S(H) = λx1 . . . λxl.B[X1 := x1, . . . , Xl := xl] for each
second-order variable H in E such that xH : ∀X1 . . .∀Xl.B ∈ Γ. Observe now, that Γ ⊇ Γo,S

in the notation of Proposition 4.7 (up to inessential renaming of the constants). Then the
case (2) of the proposition gives a slightly modified substitution S♯ that solves E.

Now, we must enforce a particular form of type for the variable f . We define, therefore,
a term Nf , which forces the required type. For this, let id = λx.x and ID = Λ.λx.x. We
write λn+1x.M for λx.(λnx.M) where λ0x.M ≡ M . Let us define:

Nf ≡ z (z1(fa)) (z2(a[]
m+1 idm+1))

(z2(a[]
m+1 ID (Λ.ID) . . . (Λm.ID))) (z3a) (z3(Λ

m+1.λm+1v.z4))

where z, z1, a, z2, z3, v, z4 are fresh term variables.

Lemma 4.9. (a) If Nf is typable where the derivation contains types only in level (k + 2)
with k ≥ 0, then for all types D1, . . . , D6 in level (k + 2) there is a context Γf such that

Γf (a) = ∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(X1 → · · · → Xm → D1) with
X1, . . . , Xm+1 6∈ FV(D1), l1, . . . , lm+1 ≤ k + 1,

Γf (f) = Γf (a) → D2, Γf (z1) = D2 → D3, Γf (z2) = D1 → D4,

Γf (z3) = Γf (a) → D5,Γf (z4) = D1, and
Γf (z) = D3 → D4 → D4 → D5 → D5 → D6.

(4.2)

(b) Suppose that D1, . . . , D6 are types in level k+2. A judgement Γf ⊢ Nf : D6 is derivable
in level k + 2, where Γf is defined as in (4.2).

116 K. FUJITA AND A. SCHUBERT

Proof. (a) If Nf is typable in level (k + 2) with k ≥ 0, then the subterm (z1(fa)) enforces
an arrow type on type of f . Further the pair of subterms (z3a) and (z3(Λ

m+1.λm+1v.z4))

enforce the shape ∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(A1 → · · · → Am → D1), with l1, . . . , lm+1 ≤ k + 1

and some types Ai, D1, on the type of a (being the argument type of f). Moreover, the
subterms (a[]m+1 idm+1) and (a[]m+1 ID (Λ.ID) . . . (Λm.ID)) enforce the shape

∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(Xi1 → · · · → Xim+1

→ D1)
on type of a for some permutation i1, . . . , im+1 of 1, . . . ,m+ 1. In addition, the typability
of (Λm+1.λm+1v.z4) gives X1, . . . , Xm+1 6∈ FV(D1) from the variable condition on (∀I), so
that we have

Γf (f) = (∀X
(l1)
1 . · · · ∀X

(lm+1)
m+1 .(Xi1 → · · · → Xim+1

→ D1)) → D2.
For types of other free variables, the analysis is straightforward.

(b) A direct check gives us the case of the lemma.

4.4. The Main Theorem

We can now prove the main result of the paper.

Theorem 4.10 (TP, TIP, TCP). TP2, TIP1, and TCP1 together with TP, TIP, and TCP
are undecidable for the type-free system of λ2.

Proof. Consider first TIP1. We can take as an instance of the problem M ≡ λ~y.yoMEMo

and Γ ≡ Γo ∪ {xC : C | C is a constant} where all the type variables in Γ are in level 1 and
~y are all free term variables in ME except those in Γ. If Γ ⊢ M : A is derivable in level 1
then there is Γ′ such that Γ′ ⊢ ME : A′ is derivable in level 1. By Proposition 4.1 applied
to Mo we obtain A′ = o. Now, we can define a substitution S such that S(X) = B for all
xX : B ∈ Γ′ and S(H) = λx1 . . . xl.B[X1 := x1, . . . , Xl := xl] for each second-order variable
H in E such that xH : ∀X1 . . . ∀Xl.B ∈ Γ′. Immediate check verifies that, Γ′ ⊇ Γo,S (in
notation of Proposition 4.7). Now, Proposition 4.7(2) gives that E is solvable.

If E is solved by S then we can impose that nullary symbols are in level 0. Then
Proposition 4.7(1) gives derivation of Γo,S ⊢ ME : o in level 1 and Proposition 4.1 gives
Γo,S ⊢ Mo : o. These two can be immediately combined into a derivation of Γ ⊢ M : A for
some A. In this way we reduced the solvability of equations in flat form to TIP1. The same
proof works for the unbounded version of TIP and for the impredicative system.

The reasoning for TCP1 follows the same lines, but we take as an instance the judgement
Γ ⊢ (λv.xo)(λ~y.yoMEMo) : o, where v is fresh and Γ is the context given for the TIP1 above.

As for the proof that TP(2) is undecidable, we can assume w.l.o.g that FV(Nf) ∩

FV(M̂E) = {f}. We show now that the typability of zNfM̂E in level 2 is equivalent to

solvability of E. Indeed, suppose that the judgement Γ ⊢ zNfM̂E : A is derivable in level 2
for some Γ, A. From Lemma 4.9(a),

Γ(f) = (∀X
(1)
1 . · · · ∀X

(1)
m+1.(X1 → · · · → Xm → D1)) → D2

with X1, . . . , Xm+1 6∈ FV(D1). Hence, the shape of M̂E implies that Γ ⊢ M̂E : D2 is
derivable. By Proposition 4.8, we obtain the solvability of E.

In case E is solvable, we combine Lemma 4.9(b) with Proposition 4.8 in a straightfor-

ward way. Notice that M̂E is typed here in level 2.
We can now conclude that TP is undecidable in level 2. The same proof works for the

unbounded version of TP and for the impredicative system.

THE UNDECIDABILITY OF TYPE RELATED PROBLEMS IN TYPE-FREE STYLE SYSTEM F 117

A careful reader might spot that the solution S obtained from a derivation can contain
occurrences of ∀ which is not used in standard second-order unification expressions. This
can, however, be mitigated by the following proposition.

Proposition 4.11. If a set E of equations does not contain occurrence of the symbol ∀ then
for each solution S of E there is a solution which does not use ∀.

Proof. In order to prove the proposition, you should simply fix a constant (or a variable)
C and each time S(X) or S(H) contains an occurrence of ∀ replace the subterm at that
occurrence with C. In this way we obtain a substitution S′. For each equation A

.
= B we

obtain that S′(A) = S′(B) as each time we have something different in S′(A) than in S(A)
this must be C. This means that S(B) at the same position has ∀. Since ∀ does not occur
in B it must occur in a term which comes from S. Then this occurrence of ∀ is replaced
with C in S′.

5. Concluding Remarks

The current paper shows new paths of investigation on the type-free systems, interesting
type systems for functional programming with moderate type annotation and the relation
to the second-order unification. We have proved the undecidability of the type-checking,
type inference and typability problems for the predicative version of the System F in the
type-free style. The proof method even works for the impredicative version by flatting
stratified types. Namely, TCP, TIP, and TP are all undecidable for the System F in the
type-free style. Then, as in [NTKN08], the technique of CPS-translation can be applied to
show that TCP, TIP, and TP are all undecidable for the existential system λ∃ [FS09] in
the type-free style, consisting of (¬,∧, ∃). In [FS09], we proved that all of the type related
problems are in general undecidable for the type-free system of λ∃ consisting of (→, ∃).
We remark that a detailed analysis on the proof method in [FS09] reveals that TCP and
TIP are still undecidable for the finitely stratified λ∃ of (→, ∃) in level 2 and that TP is
undecidable for the system in level 3 as well. Moreover, the extended version [FS] leads to
stricter borders, such that TCP and TIP are undecidable in level 1 and TP is undecidable
in level 2 for the predicative system λ∃ of (→, ∃).

For the predicative version of the System F in the type-free style, our results provide a
strict undecidability border for TCP and TIP problems as they are undecidable for level 1
types (level 0 types have no quantifiers so they are equivalent to the simply typed lambda
calculus). We also prove undecidability for TP in level 2. We believe that the current con-
struction can be adapted to prove undecidability of TP in level 1. In that case, however, the
constants obtained in the proof of Proposition 4.8 must be simulated by more complicated
(arrow) types which makes the whole construction much more involved.

References

[Ami90] Gilles Amiot. The undecidability of the second order predicate unification problem. Archive for

Mathematical Logic, 30(3):193–199, May 1990.
[Boe85] H.-J. Boehm. Partial polymorphic type inference is undecidable. In 26th Annual Symposium on

Foundations of Computer Science, pages 339–345. IEEE, October 1985.
[FS] K. Fujita and A. Schubert. Existential type systems between Church and Curry style. Submitted.

Available from http://www.mimuw.edu.pl/~alx/papers/existential-chcu.pdf.

118 K. FUJITA AND A. SCHUBERT

[FS00] K. Fujita and A. Schubert. Partially typed terms between Church-style and Curry-style. In J. van
Leeuwen, O. Watanabe, M. Hagiya, P. D. Mosses, and T. Ito, editors, Theoretical Computer

Science, Exploring New Frontiers of Theoretical Informatics, International Conference IFIP TCS

2000, Sendai, Japan, August 17-19, 2000, Proceedings, number 1872 in LNCS, pages 505–520,
2000.

[FS09] K. Fujita and A. Schubert. Existential type systems with no types in terms. In P.-L. Curien, edi-
tor, Typed Lambda Calculi and Applications, 9th International Conference, TLCA 2009, Brasilia,

Brazil, July 1-3, 2009, Proceedings, number 5608 in LNCS, pages 112–126, 2009.
[GR94] Paola Giannini and Simona Ronchi Della Rocca. A type inference algorithm for a stratified

polymorphic type discipline. Information Computation, 109(1–2):115–173, 1994.
[HS99] John Hatcliff and Morten Heine B. Srensen. CPS translations and applications: The cube and

beyond. Higher-Order and Symbolic Computation, 12(2):125–170, September 1999.
[KTU90a] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the semi-unification problem. In

STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 468–476, New York, NY, USA, 1990. ACM.

[KTU90b] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. ML typability is DEXTIME-complete. In
CAAP ’90: Proceedings of the 15th Colloquium on Trees in Algebra and Programming, number
431 in LNCS, pages 206–220, London, UK, 1990. Springer-Verlag.

[KW94] Assaf J. Kfoury and Joeseph B. Wells. A direct algorithm for type inference in the rank-2 fragment
of the second-order λ-calculus. In LFP ’94: Proceedings of the 1994 ACM conference on LISP

and functional programming, pages 196–207, New York, NY, USA, 1994. ACM.
[Lei83] Daniel Leivant. Polymorphic type inference. In POPL ’83: Proceedings of the 10th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages, pages 88–98, New York,
NY, USA, 1983. ACM.

[Lei91] D. Leivant. Finitely stratified polymorphism. Information and Computation, 93(1):93–113, 1991.
[LV00] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Information

and Computation, 159(1–2):125–150, 2000.
[Mai90] Harry G. Mairson. Deciding ML typability is complete for deterministic exponential time. In

POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 382–401, New York, NY, USA, 1990. ACM.
[NTKN08] K. Nakazawa, M. Tatsuta, Y. Kameyama, and H. Nakano. Undecidability of type-checking in

domain-free typed lambda-calculi with existence. In CSL ’08: Proceedings of the 22nd Inter-

national Workshop on Computer Science Logic, number 5213 in LNCS, pages 478–492, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Pfe93] F. Pfenning. On the undecidability of partial polymorphic type reconstruction. Fundamenta

Informaticae, 19(1,2):185–199, September-October 1993.
[Sch98] Aleksy Schubert. Second-order unification and type inference for Church-style polymorphism.

In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, pages 279–288, New York, NY, USA, 1998. ACM.
[Sch01] Aleksy Schubert. Zastosowanie unifikacji do problemw wyprowadzania typw. PhD thesis, The

University of Warsaw, 2001. English title: Application of the unification to type inference prob-
lems, Polish text available from http://www.mimuw.edu.pl/~alx/ftp-public/doktorat.pdf.

[Wel99] J. B. Wells. Typability and type checking in system F are equivalent and undecidable. Ann. Pure
Appl. Logic, 98(1–3):111–156, 1999.

This work is licensed under the Creative Commons Attribution Non-Commercial No Deriva-
tives License. To view a copy of this license, visit http://creativecommons.org/licenses/
by-nc-nd/3.0/.

