
Tight Bounds For Distributed MST Verification∗ †

Liah Kor1, Amos Korman2, and David Peleg1

1 Department of Computer Science and Applied Mathematics, The Weizmann
Institute of Science, Rehovot, 76100 Israel.
{liah.kor,david.peleg}@weizmann.ac.il

2 CNRS and LIAFA, Univ. Paris 7, Paris, France.
amos.korman@liafa.jussieu.fr

Abstract
This paper establishes tight bounds for the Minimum-weight Spanning Tree (MST) verification
problem in the distributed setting. Specifically, we provide an MST verification algorithm that
achieves simultaneously Õ(|E|) messages and Õ(

√
n+D) time, where |E| is the number of edges

in the given graph G and D is G’s diameter. On the negative side, we show that any MST
verification algorithm must send Ω(|E|) messages and incur Ω̃(

√
n+D) time in worst case.

Our upper bound result appears to indicate that the verification of an MST may be easier
than its construction, since for MST construction, both lower bounds of Ω(|E|) messages and
Ω(
√
n+D) time hold, but at the moment there is no known distributed algorithm that constructs

an MST and achieves simultaneously Õ(|E|) messages and Õ(
√
n+D) time. Specifically, the best

known time-optimal algorithm (using Õ(
√
n + D) time) requires O(|E| + n3/2) messages, and

the best known message-optimal algorithm (using Õ(|E|) messages) requires O(n) time. On the
other hand, our lower bound results indicate that the verification of an MST is not significantly
easier than its construction.
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1 Introduction

1.1 Background and Motivation
The problem of efficiently computing a Minimum-weight Spanning Tree (MST) of a given
weighted graph has been studied extensively in the centralized, parallel and distributed
settings. Reviews on the problem in the centralized setting can be found, e.g., in the survey
paper by Graham and Hell [17] or in the book by Tarjan [32] (Chapter 6). The fastest
known algorithm for finding an MST is that of Pettie and Ramachandran [29], which runs
in O(|E| · α(|E|, n)) time, where α is the inverse Ackermann function, n is the number of
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vertices and |E| is the number of edges in the graph. Unfortunately, a linear (in the number
of edges) time algorithm for computing an MST is known only in certain cases, or by using
randomization [14, 19].

The separation between computation and verification, and specifically, the question of
whether verification is easier than computation, is a central issue of profound impact on the
theory of computer science. In the context of MST, the verification problem (introduced
by Tarjan [31]) is the following: given a weighted graph, together with a subgraph, it is
required to decide whether this subgraph forms an MST of the graph. At the time it was
published, the running time of the MST verification algorithm of [31] was indeed superior to
the best known bound on the computational problem. Improved verification algorithms in
different centralized models were then given by Harel [18], Komlòs [23], and Dixon, Rauch,
and Tarjan [9], and parallel algorithms were presented by Dixon and Tarjan [10] and by
King, Poon, Ramachandran, and Sinha [22]. Though it is not known whether there exists
a deterministic algorithm that computes an MST in O(|E|) time, the verification algorithm
of [9] is in fact linear, i.e., runs in time O(|E|) (the same result with a simpler algorithm
was later presented by King [21] and by Buchsbaum [5]). For the centralized setting, this
may indicate that the verification of an MST is indeed easier than its computation.

The problem of computing an MST received considerable attention in the distributed
setting as well. Constructing such a tree distributively requires a collaborative computa-
tional effort by all the network vertices, and involves sending messages to remote vertices
and waiting for their replies. The main measures considered for evaluating a distributed
MST protocol are the message complexity, namely, the maximum number of messages sent
in the worst case scenario, and the time complexity, namely, the maximum number of com-
munication rounds required for the protocol’s execution in the worst case scenario. The line
of research on the distributed MST computation problem was initiated by the seminal work
of Gallager, Humblet, and Spira [15] and culminated in the O(n) time and O(|E|+ n logn)
messages algorithm by Awerbuch [2]. As pointed out in [2], the results of [4, 6, 13] establish
an Ω(|E| + n logn) lower bound on the number of messages required to construct a MST.
Thus, the algorithm of [2] is essentially optimal.

This was the state of affairs until the mid-nineties when Garay, Kutten, and Peleg [16]
initiated the analysis of the time complexity of MST construction as a function of additional
parameters (other than n), and gave the first sublinear time distributed algorithm for the
MST problem, running in time O(D+n0.614), where D is the diameter of the network. This
result was later improved to O(D +

√
n log∗ n) by Kutten and Peleg [26]. The tightness

of this latter bound was shown by Peleg and Rubinovich [28] who proved that Ω̃(
√
n) is

essentially1 a lower bound on the time for constructing MST on graphs with diameter
Ω(logn). This result was complemented by the work of Lotker, Patt-Shamir and Peleg [27]
that showed an Ω̃( 3

√
n) lower bound on the time required for MST construction on graphs

with small diameter. Note, however, that the time-efficient algorithms of [16, 26] are not
message-optimal, i.e., they take asymptotically much more than O(|E|+ n logn) messages.
For example, the time-optimal protocol of [26] requires sending O(|E|+n3/2) messages. The
question of whether there exists an optimal distributed algorithm for MST construction that
achieves simultaneously Õ(|E|) messages and Õ(

√
n+D) time remains open.

This paper addresses the MST verification problem in the distributed setting. Here,
a subgraph is given in a distributed manner, namely, some of the edges incident to every
vertex are locally marked, and the collection of marked edges at all the vertices defines the

1 Ω̃ (respectively, Õ) is a relaxed variant of the Ω (rep., O) notation that ignores polylog factors.
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subgraph; see, e.g., [7, 15, 24, 25]. The verification task requires checking distributively
whether the marked subgraph is indeed an MST of the given graph. Similarly to the cent-
ralized setting, one of our major motivations is to investigate the relationships between the
MST construction problem and the related verification problem. Moreover, from an applic-
ative point of view, since faults are much more likely to occur in the distributed setting,
the verification task in the distributed setting is more practically significant than in the
centralized setting. Finally, we note that generally, investigating the “simpler” verification
problem may lead to breakthroughs in the efforts for solving the corresponding construction
problem. This was indeed useful in the centralized setting, where the verification algorithm
of [9], that determines for each edge whether it “improves” a given MST candidate, was used
as a subroutine for the subsequent MST construction algorithms of [19, 29].

In this paper, we present an MST verification algorithm that achieves simultaneously
Õ(|E|) messages and Õ(

√
n+D) time. This result appears to indicate that MST verification

may be easier than MST construction. Conversely, we show that the verification problem is
not much easier, by proving that the known lower bounds for MST construction also hold
for the verification problem. Specifically, we show that Ω(|E|) messages must be sent in
worst case by any MST verification algorithm, and that Ω̃(

√
n+D) communication rounds

are also required.
Our Ω(|E|) lower bound on the number of messages is fairly straightforward. The

Ω̃(
√
n + D) time lower bound is achieved by a (somewhat involved) modification of the

corresponding lower bound for the computational task [28]. Our verification algorithm
builds upon techniques taken from the time optimal MST construction paper [26], and from
the papers on labeling schemes [20, 24]2. More specifically, after collecting some topological
structure at some central vertex (in a way inspired by [26]), the algorithm avoids spreading
all this information to all vertices, in order to save on messages. Instead, it carefully divides
this information into pieces using the flow labeling scheme of [20, 24] and sends one piece
of information to each vertex. This distribution of information is done in such a way that
allows the verification to carry on using these pieces of information only.

1.2 The Model
A point-to-point communication network is modeled as an undirected graph G(V,E), where
the vertices in V represent the network processors and the edges in E represent the com-
munication links connecting them. The length of a path in G is the number of edges it
contains. The distance between two vertices u and v is the length of the shortest path con-
necting them. The diameter of G, denoted D, is the maximum distance between any two
vertices of G.

Vertices are assumed to have unique identifiers, and each vertex knows its own identifier.
The vertices do not know the topology or the edge weights of the entire network, but
they know the weights of the edges incident to them. More precisely, a weight function
ω : E → N associated with the graph assigns a nonnegative integer weight ω(e) to each edge
e = (u, v) ∈ E. The weight ω(e) is known to the adjacent vertices, u and v. We assume
that the edge weights are bounded by a polynomial in n (the number of vertices). The

2 The MST verification problem is considered in [24] from a different angle, closer to the notions of local
checking [1, 3] or computation with advice [8, 11, 12]. Specifically, the focus therein is on the minimum
size of a label (i.e., amount of information stored at a vertex) needed to allow verification of an MST in
a single round, by exchanging the labels between neighboring vertices. The complexity of computing
these labels are not in the scope of that paper.

STACS’11
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vertices can communicate only by sending and receiving messages over the communication
links. Each vertex can distinguish between its incident edges. Moreover, if vertex v sends
a message to vertex u along the edge e = (v, u), then upon receiving the message, vertex u
knows that the message was delivered over the edge e.

Similarly to [16, 26], we assume that the communication is carried out in a synchronous
manner, i.e., all the vertices are driven by a global clock. Messages are sent at the beginning
of each round, and are received at the end of the round. (Clearly, our lower bounds hold
for asynchronous networks as well.) At most one B-bit message can be sent on each link in
each direction on every round. Similarly to previous work, we assume that B = O(logn).
The model also allows vertices to detect the absence of a message on a link at a given round,
which can be used to convey information. Hence at each communication round, a link can
be at one of 2B + 1 possible states, i.e., it can either transmit any of 2B possible messages,
or remain silent.

1.3 The distributed MST Verification problem
Formally, the minimum-weight spanning tree (MST) verification problem can be stated as
follows. Given a graph G(V,E), a weight function ω on the edges, and a subset of edges
T ⊆ E, referred as the MST candidate, it is required to decide whether T forms a minimum
spanning tree onG, i.e., a spanning tree whose total weight w(T ) =

∑
e∈T ω(e) is minimal. In

the distributed model, the input and output of the MST verification problem are represented
as follows. Each vertex knows the weights of the edges connected to its immediate neighbors.
A degree-d vertex v ∈ V with neighbors u1, . . . , ud has d weight variables W v

1 , . . . ,W
v
d , with

W v
i containing the weight of the edge connecting v to ui, i.e., W v

i = ω(v, ui), and d boolean
indicator variables Y v

1 , . . . , Y
v

d indicating which of the edges adjacent to v participate in the
MST candidate that we wish to verify. The indicator variables must be consistent, namely,
for every edge (u, v), the indicator variables stored at u and v for this edge must agree (this
is easy to verify locally). Similarly to previous work on MST construction, we assume that
the verification algorithm is initiated by a designated source node. Let TY be the set of
edges marked by the indicator variables (i.e., all edges for which the indicator variable is set
to 1). The output of the algorithm at each vertex v is an assignment to a (boolean) output
variable Av that must satisfy Av = 1 if TY is an MST of G(V,E, ω), and Av = 0 otherwise.

1.4 Our Results
We establish asymptotically tight bounds for the time and message complexities of the MST
verification problem. Specifically, in the positive direction we show the following:

I Theorem 1.1. There exists a distributed MST verification algorithm that uses Õ(
√
n+D)

time and Õ(|E|) messages.

This upper bound is complemented by two lower bounds.

I Theorem 1.2. Any distributed algorithm for MST verification requires Ω(|E|) messages.

I Theorem 1.3. Any distributed algorithm for MST verification requires Ω̃(
√
n+D) time.

Theorem 1.2 is proved (in a rather straightforward manner) assuming that a vertex knows
only its own identifier. We note, however, that it can be generalized to the model where
each vertex knows also the identifiers of its neighbors, yielding Ω(|E|) lower bounds similar
to those of [4]. Due to lack of space, the proof of Theorem 1.3 is deferred to the full paper.
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2 An MST Verification Algorithm

2.1 Definitions and Notations
Following are some definitions and notations used in the description of the algorithm. For
a graph G = (V,E,w), an edge e is said to be cycle-heavy if there exists a cycle C in G that
contains e, and e has the heaviest weight in C. For a graph G = (V,E,w), a set of edges
F ⊆ E is said to be an MST fragment of G if there exists a minimum spanning tree T of G
such that F is a subtree of T (i.e., F ⊆ T and F is a tree). Similarly, a collection F of edge
sets is referred to as an MST fragment collection of G if there exists an MST T of G such
that (1) Fi is a subtree of T for every Fi ∈ F , (2) ∪

Fi∈F
V (Fi) = V , and (3) V (Fi)∩V (Fj) = ∅

for every Fi, Fj ∈ F .
Consider a graph G = (V,E,w), an MST fragment collection F , a subgraph T of G

and a vertex v in G. The fragment graph of G, denoted GF , is defined as a graph whose
vertices are the MST fragments Fi ∈ F , and whose edge set contains an edge (Fi, Fj) iff
there exist vertices u ∈ V (Fi) and v ∈ V (Fj) such that (u, v) ∈ E. The fragment graph
induced by T , denoted TF , is defined as a graph whose vertices are the MST fragments
Fi ∈ F , and whose edge set contains an edge (Fi, Fj) iff there exist vertices u ∈ V (Fi)
and v ∈ V (Fj) such that (u, v) ∈ T . The edges of TF are also referred to as the inter-
cluster edges induced by T . For each fragment Fi ∈ F , the set of fragment internal edges
induced by T , denoted T i

I , consists of all edges of T with both endpoints in V (Fi), i.e.,
T i

I = {e | e = (u, v) ∈ T and u, v ∈ V (Fi)}. The fragment of v, denoted by F(v), is the
fragment Fi ∈ F such that v ∈ V (Fi). Denote by EF (v) the set of fragment internal edges
that are incident to v (i.e., EF (v) = {e| e = (u, v) ∈ E and u ∈ V (F(v))}). Similarly,
denote by ETI

(v) the set of fragment internal edges induced by T and incident to v.
Throughout the description of the verification algorithm we assume that the edge weights

are distinct. Having distinct edge weights simplifies our arguments since it guarantees the
uniqueness of the MST. Yet, this assumption is not essential. Alternatively, in case the graph
is not guaranteed to have distinct edge weights, we may use a modified weight function ω′(e),
which orders edge weights lexicographically: first, by their original weight ω(e), then, by the
indicator variable of the edge, and finally, by the identifiers of the edge endpoints. Under
the weight function ω′(e), edges with indicator variable set to “true” will have lighter weight
than edges with the same weight under ω(e) but with indicator variable set to “false” (i.e.,
for edges e1 ∈ T and e2 /∈ T such that w(e1) = w(e2), we have w′(e1) < w′(e2)). It follows
that the given subgraph T is an MST of G(V,E, ω) iff T is an MST of G(V,E, ω′). Moreover,
since ω′(·) takes into account the unique vertex identifiers, it assigns distinct edge weights.

The MST verification algorithm makes use of Procedures DOM_Part and MAX_Label,
presented in [26] and [20] respectively. The distributed Procedure DOM_Part, used in [26],
partitions a given graph into an MST fragment collection (MFC) F , where each fragment
is of size at least k + 1 and depth O(k), for a specified parameter k. A fragment leader
vertex is associated with each constructed fragment (the identifier of the fragment is the
identifier of the fragment’s leader). After Procedure DOM_Part is completed, each vertex v
knows the identifier of the fragment to which it belongs and v’s incident edges that belong
to the fragment. (To abide by the assumption of [26] that each vertex knows the identifi-
ers of its neighbors, before applying Procedure DOM_Part, the algorithm performs a single
communication round that exchanges vertex identifiers between neighboring vertices.)

The labeling scheme MAX_Label of [20] which is designed for the family of weighted trees
constructs an encoder algorithm E and a decoder algorithm D that satisfy the following:
1. Given a weighted tree T , the encoder algorithm E assigns a label L(v) to each vertex v of T .

STACS’11
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2. Given two labels L(u), L(v) assigned by E to two vertices u and v in some weighted tree
T , the decoder algorithm D outputs MAX(u, v), which is the maximum weight of an edge
on the path connecting u and v in T . (The decoder algorithm D bases its answer on the pair
of labels L(u), L(v) only, without knowing any additional information regarding the tree T .)
The labeling scheme MAX_Label produces O(logn logW )-bit labels, where W is the largest
weight of an edge. Since W is assumed to be polynomial in n, the label size is O(log2 n) bit.

2.2 The algorithm
The algorithm consists of three phases. The first phase starts by running the distributed
Procedure DOM_Part of [26], which constructs an MST fragment collection (MFC) F for a
fixed parameter k that will be specified later. The algorithm verifies that the set of edges
contained in the constructed MFC is equal to the set of fragment internal edges induced by
the MST candidate T , namely, ∪

Fi∈F
Fi = ∪

Fi∈F
T i

I (note that this is a necessary condition for
correctness since the graph is assumed to have a unique MST).

In the second and third phases, the algorithm verifies that all remaining edges of T form
an MST on the fragment graph GF . Let TF be the fragment graph induced by T with
respect to the MFC F found in the previous phase. In order to verify that TF forms an
MST on the fragment graph GF , it suffices to verify that TF is a tree and that none of the
edges of TF is a cycle heavy edge in GF . The above is done by using the labeling scheme
(E ,D) of [20] (or [24]) on TF . Informally, the algorithm assigns a label L(Fi) to each vertex
Fi of TF using the encoder algorithm E applied on TF . The label L(Fi) is then efficiently
delivered to each vertex in Fi. Recall, that given the labels of two fragments L(Fi), L(Fj)
it is now possible to compute the weight of the heaviest edge on the path connecting the
fragments in TF by applying the decoder algorithm D. Once all vertices obtain the labels of
their corresponding fragments, each vertex of G can verify (using the decoder D) that each
inter fragment edge incident to it and not participating in TF forms a cycle when added
to TF for which it is a cycle heavy edge. Following is a more detailed description of the
algorithm.

1. a. The source vertex s (that initiates the algorithm) constructs a BFS tree rooted at s,
computes the values n and D and broadcasts a signal on the BFS tree instructing
each vertex to send its identifier to all its neighbors.

b. Perform Procedure DOM_Part(k), where k is specified later. (The result is an MFC F ,
where each fragment F ∈ F is of size |V (F )| > k and depth O(k), having a fragment
leader and a distinct fragment identifier known to all vertices in the fragment).

c. Each vertex sends its fragment identifier to all its neighbors.
d. Each vertex v identifies the sets of edges EF (v) and ETI

(v).
e. Verify that ∪

Fi∈F
Fi = ∪

Fi∈F
T i

I by verifying at each vertex v that EF (v) ⊆ T and
ETI

(v) ⊆ F(v). (Else return “T is not an MST”.)
2. a. Vertex s counts the number of fragments by performing a convergecast on the BFS

tree (only fragment leader vertices increase the counter of the convergecast). Let f
be the number of fragments.

b. Vertex s counts the number of inter fragment edges induced by T (i.e., the number of
edges in TF ) by performing a convergecast on the BFS tree. Then, Vertex s verifies
that the number of edges is equal to f − 1. (Else return “T is not an MST”.)

c. All vertices send the description of all edges in TF to s, by performing an upcast on
the BFS tree. (The edges of TF are all edges of T that connect vertices from different
fragments.)
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d. Vertex s verifies that TF is a tree. (Else return “T is not an MST”.)
3. a. Each fragment leader sends a message to vertex s over the BFS tree. Following these

messages, all vertices save routing information regarding the fragment leaders. I.e., if
v is a fragment leader and v is a descendant of some other vertex u in the BFS tree,
then, after this step is applied, vertex u knows which of its children is on the path
connecting it to the fragment leader v.

b. Vertex s computes the labels L(Fi) for all vertices Fi in TF (i.e., assigns a label to
each of the fragments) using the encoder algorithm E . Subsequently, vertex s sends
to each fragment leader its fragment label (the label of each fragment is sent to the
fragment leader over the BFS tree using the routing information established in Step
3a above). Recall, each label is encoded using O(log2 n) bits.

c. Each fragment leader broadcasts its fragment label to all vertices in the fragment.
The broadcast is done over the fragment edges.

d. Each vertex sends its fragment label to all its neighbors.
e. Each vertex v verifies for every neighbor u not belonging to v′s fragment, and s.t.

(u, v) /∈ T , that w(v, u) ≥ MAX(F(v),F(u)) (the value MAX(F (v), F (u)) is com-
puted by applying the decoder algorithm D on labels L(F(v)), L(F(u))). (Else return
“T is not an MST”.)

2.3 Complexity

Steps 1a and 1c clearly take O(D) time and O(|E|) messages. Step 1b, i.e., the execution of
Procedure DOM_Part, requires O(k·log∗ n) time and O(E ·log k+n·log∗ n·log k) messages. (A
full analysis appears in [30].) The remaining steps of the first phase are local computations
performed by all vertices. Thus, the first phase of the MST verification algorithm requires
O(D + k · log∗ n) time and O(E · log k + n · log∗ n · log k) messages.

Since the fragments are disjoint and each fragment contains at least k vertices, the
number of MST fragments constructed during the first phase of the algorithm is f ≤ n/k.
The table below summarizes the time and message complexities of the second and third
phases of the algorithm.

Step Description Time Messages

2a,2b BFS convergecast O(D) O(|E|)
3d Communication between neighbors O(log n) O(log n · |E|)
2d,3e Local computation 0 none
2c,3a BFS upcast of f messages O(D + f) O(f ·D)
3b BFS downcast of f messages (each of size log2 n) O(D + f · log n) O(f · log n ·D)
3c Broadcast in each of the MST fragments O(k + log n) O(log n · n)

Combining the above arguments, we get that the algorithm requires time O( n
k · logn + k ·

log∗ n+D) and O(E ·logn+n·log∗ n·log k+ n
k ·logn·D+n·logn) messages. Recall that after

Step 1a is applied, the source vertex s knows the number of nodes n and the diameter D.
By choosing k =

√
n in case D <

√
n and k = D otherwise, we get the following, implying

Theorem 1.1.

I Lemma 2.1. The MST verification algorithm requires O(
√
n · logn+D) time and (|E| ·

logn) messages.

STACS’11
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2.4 Correctness
We now show that our MST verification algorithm correctly identifies whether the given tree
T is an MST. We begin with the following claim.
I Claim 2.2. Let T be a spanning tree of G such that T contains all edges of the MFC F
and TF forms an MST on the fragment graph of G (with respect to the MFC F). Then T
is an MST on G.

Proof. Since F is an MST Fragment collection, there exists an MST T ′ of G such that T ′
contains all edges of F . Due to the minimality of T ′, the fragment graph T ′F induced by T ′
necessarily forms an MST on the fragment graph of G (with respect to the MFC F). Hence
we get that w(T ) = w(T ′), thus T is an MST of G. J

Due to the assumption that edge weights are distinct, we get:
I Observation 2.3. The MST of G is unique.
By combining Claim 2.2 and Observation 2.3 we get the following.
I Claim 2.4. A spanning tree T of G is an MST if and only if T contains all edges of the
MFC F and TF forms an MST on the fragment graph of G (with respect to the MFC F)

I Lemma 2.5. The MST verification algorithm correctly identifies whether the given tree T
is an MST of the graph G.

Proof. By Claim 2.4, to prove the correctness of the algorithm it suffices to show that given
an MST candidate T , the algorithm verifies that:
(1) T is a spanning tree of G,
(2) T contains all edges of F , and
(3) TF forms an MST on the fragment graph of G with respect to the MFC F .

Since F as constructed by Procedure DOM_Part in the first phase is an MFC, it spans
all vertices of G. Step 1e verifies that ∪

Fi∈F
Fi = ∪

Fi∈F
T i

I , thus after this step, it is verified
that T does not contain a cycle that is fully contained in some fragment Fi ∈ F (since every
Fi ∈ F is a tree). On the other hand, step 2d verifies that T does not contain a cycle that
contains vertices from different fragments. Hence, the algorithm indeed verifies that T is
a spanning tree of G, and Property (1) follows. Property (2) is clearly verified by step 1e
of the algorithm. Finally, to verify that TF forms an MST on the fragment graph of G it
suffices to verify that inter-fragment edges not in TF are cycle heavy, which is done in step
3e. Property (3) follows. J

3 Message Complexity Lower Bound

We prove a message complexity lower bound of Ω(|E|) on the Spanning Tree (ST) verification
problem, which is a relaxed version of the MST verification problem defined as follows. Given
a graph G = (V,E, ω) and a subgraph T (referred to as the ST candidate), we wish to decide
whether T is a spanning tree of G (not necessarily of minimal weight). Clearly, a lower bound
on ST verification problem also applies to the MST verification problem. Since spanning
tree verification is independent of the edge weights, for convenience we consider unweighted
networks throughout the lower bound proof.

We begin with a few definitions. A protocol is a local program executed by all vertices in
the network. In every step, each processor performs local computations, sends and receives
messages, and changes its state according to the instructions of the protocol. A protocol
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achieving a given task should work on every network G and every ST candidate T . Fol-
lowing [4], we denote the execution of protocol Π on network G(V,E) with ST candidate T
by EX(Π, G, T ). The message history of an execution EX = EX(Π, G, T ) is a sequence
describing the messages sent during the execution EX. Consider a protocol Π, two graphs
G0(V,E0) and G1(V,E1) over the same set of vertices V , and two ST candidates T0 and T1
for G0 and G1 respectively, and the corresponding executions EX0 = EX(Π, G0, T0) and
EX1 = EX(Π, G0, T1). We say that the executions are similar if their message history is
identical.

Let G = (V,E) be a graph (together with an assignment of vertex identifiers), T be a
subgraph and e = (u, v) be one of its edges. Let G′ = (V ′, E′) be some copy of G = (V,E),
where the identifiers of the vertices in V ′ are not only pairwise distinct but also distinct from
the given identifiers on V . Consider the following graphs G2 and Ge and the subgraph T 2.
• Graph G2 is simply G2 = (V 2, E2) = G ∪G′ = (V ∪ V ′, E ∪E′). The subgraph T 2 of G2

is defined as the union of the two copies of T , one in G and the other in G′.
• The graph Ge is a “cross-wired” version of G2. Formally, Ge = (V 2, Ee), where Ee =
E2 r {(u, v), (u′, v′)} ∪ {(u, v′), (u′, v)}. (Observe, for e /∈ T , T 2 is also a subgraph of Ge.)

Let Π be a protocol that correctly solves ST verification problem. Fix G to be some
arbitrary graph, fix a copy G′ of G, fix a spanning tree T of G, and fix a source vertex s ∈ V
initiating the execution of Π on either of the graphs G,G2 and Ge with the ST candidates
T, T 2 and T 2, respectively. We stress that G2 (with candidate T 2) is not a valid input for
the ST (or the MST) verification problem since it is not connected. Still, we can consider
the execution EX(Π, G2, T 2), without requiring anything from its output.

I Lemma 3.1. Let e ∈ E \ E(T ), such that no message is sent over the edges e and e′ in
execution EX(Π, G2, T 2). Then executions EX(Π, G2, T 2) and EX(Π, Ge, T 2) are similar.

Proof. Proof Sketch of lemma 3.1. We show that in both executions each vertex sends and
receives identical sequences of messages in each communication round of the protocol. Note
that at each round the messages sent by some vertex w is dependent on w’s topological view
(neighbors of w), w′s initial input (the indicator variables of the edges incident to w), and
the set of messages sent and received by w in previous communication rounds. Denote by
EX2 and EXe executions EX(Π, G2, T 2) and EX(Π, Ge, T 2) respectively. Note that any
vertex w ∈ V 2 r {u, v, u′, v′} has identical topological view and identical initial input in
both executions. Vertex u has identical initial input and identical number of neighbors in
both executions. Though the communication link connecting u to v in G2 connects u to v′
in Ge, vertex u is initially unaware of this difference between the executions since it does
not know the identifiers of its neighbors. (Same holds for vertices v, u′ and v′.) The proof
is by induction on r, the number of communication rounds of protocol Π.
Induction base: For r = 0. In the first communication round, the messages sent by each
vertex depend solely on its topological view and initial input. Let us analyze the sequence
of messages sent by vertices in V (the vertices of graphs G2 and Ge that belong to the first
copy of G). Following are the possible cases.
Vertex w /∈ {u, v}: Vertex w has identical topological view and identical initial input in both
execution, thus it sends identical sequence of messages in the first round of both executions.
Vertex u: As mentioned above, although in execution EXe vertex u is connected to v′

instead of v, it has no knowledge of this difference. Thus u sends identical sequence of
messages over each of its communication links. The fact that no messages are sent over edge
e in execution EX2, implies that in execution EXe no message is sent by u to its neighbor
v′. Thus, u sends identical sequence of messages in the first communication round of both
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executions.
Vertex v: can be analyzed in the same manner as vertex u.
The above shows that vertices in V send the same sequence of messages in the first commu-
nication round of both executions. The induction base claim follows by applying the same
argument on vertices of V ′.

Inductive step: Can be shown using a similar case analysis as in the induction base. J

Theorem 1.2 follows as a consequence of the following Lemma.

I Lemma 3.2. Execution EX(Π, G2, T 2) requires Ω(|E2 r T 2|) messages.

Proof. Assume, towards contradiction, that there exists a protocol Π that correctly solves
the ST verification problem for every graph G and ST candidate T , such that execution
EX(Π, G, T ) sends fewer than |E r T |/2 messages over edges from E r T .

For the rest of the proof we fix G = (V,E) to be an arbitrary connected graph and denote
the ST candidate by T . We take T to be a spanning tree and not just any subgraph. (See
Figure 1).

e

u

v

Figure 1 Graph G with ST candidate T (the bold edges belong to T )

Consider the graph G2 as previously defined with ST candidate T 2 = {e ∈ T}∪{(u′, v′) :
e = (u, v) ∈ T} (See Figure 2).

e’e

v’

u’u

v

Figure 2 Graph G2 with ST candidate T 2 (the bold edges belong to T 2)

Then by the assumption on Π, execution EX2 = EX(Π, G2, T 2) sends fewer than |E2 r
T 2|/2 messages over edges from E2 r T 2. Hence there exist e = (u, v) and e′ = (u′, v′) such
that e, e′ ∈ E2 r T 2 and no message is sent over e and e′ in execution EX2. Consider the
graph Ge with ST candidate T 2 as previously defined (See Figure 3).

By Lemma 3.1, executions EX2 and EXe = EX(Π, Ge, T 2) are similar. Note that
e, e′ /∈ T 2, thus T 2 is not a spanning tree of Ge (since the two copies of G contained in Ge
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v’

u’u

v

Figure 3 Graph Ge with ST candidate T 2 (the bold edges belong to T 2)

are connected solely by edges e and e′). Since Π correctly solves the ST verification problem,
the output of all vertices in EXe is “0” (i.e., the given ST candidate T 2 is not a spanning
tree of the graph Ge). On the other hand, consider the execution EX = (Π, G, T ) with ST
candidate T . Note that EX is exactly the restriction of EX2 on the first copy of G contained
in G2. Since G2 contains two disconnected copies of G the output of all vertices in execution
EX2 will be identical to the output of the same vertices in EX (since in both executions
the vertices have identical topological view and the input variables contain identical values).
Since executions EX2 and EXe are similar, the output of EX is “0”, in contradiction to
the correctness of Π. J
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