
Declarative Processing of Semistructured Web
Data
Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract
In order to give application programs access to data stored in the web in semistructured formats,
in particular, in XML format, we propose a domain-specific language (DSL) for declarative
processing such data. Our language is embedded in the functional logic programming language
Curry and offers powerful matching constructs that enable a declarative description of accessing
and transforming XML data. We exploit advanced features of functional logic programming
to provide a high-level and maintainable implementation of our language. Actually, this paper
contains the complete code of our implementation so that the source text of this paper is an
executable implementation of our embedded DSL.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases functional logic programming, domain specific languages, XML

Digital Object Identifier 10.4230/LIPIcs.ICLP.2011.198

1 Motivation

Nowadays, huge amounts of information are available in the world-wide web. Much of
this information is also available in semistructured formats so that it can be automatically
accessed by application programs. The extensible markup language (XML) is often used as an
exchange format for such data. Since data in XML format are basically term structures, XML
data can be (in principle) easily processed with functional or logic programming languages:
one has to define a term representation of XML data in the programming language, implement
a parser from the textual XML representation into such terms, and exploit pattern matching
to implement the specific processing task.

In practice, such an implementation causes some difficulties due to the fact that the
concrete data formats are complex or evolve over time:

For many application areas, concrete XML languages are defined. However, they are
often quite complex so that it is difficult or tedious to deal with all details when one is
interested in extracting only some parts of the given data.
For more specialized areas without standardized XML languages, the XML format might
be incompletely specified or evolves over time. Thus, application programs with standard
pattern matching must be adapted if the data format changes.

For instance, consider the XML document shown in Fig. 1 which represents the data of a
small address book. As one can see, the two entries have different information fields: the first
entry contains two email addresses but no nickname whereas the second entry contains no
email address but a nickname. Such data, which is not uncommon in practice, is also called
“semistructured” [1]. Semistructured data causes difficulties when it should be processed with
a declarative programming language by mapping the XML structures into data terms of the
implementation language. Therefore, various distinguished languages for processing XML
data have been proposed.

© Michael Hanus;
licensed under Creative Commons License NC-ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 198–208

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.198
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


Michael Hanus 199

<contacts>
<entry>

<name>Hanus</name>
<first>Michael</first>
<phone>+49-431-8807271</phone>
<email>mh@informatik.uni-kiel.de</email>
<email>hanus@acm.org</email>

</entry>
<entry>

<name>Smith</name>
<first>William</first>
<nickname>Bill</nickname>
<phone>+1-987-742-9388</phone>

</entry>
</contacts>

Figure 1 A simple XML document

For instance, the language XPath1 provides powerful path expressions to select sub-
documents in XML documents. Although path expressions allow flexible retrievals by the
use of wildcards, regular path expressions, stepping to father and sibling nodes etc, they
are oriented towards following a path through the document from the root to the selected
sub-documents. This gives them a more imperative rather than a descriptive or declarative
flavor. The same is true for query and transformation languages like XQuery2 or XSLT3

which are based on the XPath-oriented style to select the required sub-documents.
As an alternative to path-oriented processing languages, the language Xcerpt [5] is a

proposal to exploit ideas from logic programming in order to provide a declarative method
to select and transform semistructured data in XML format. In contrast to pure logic
programming, Xcerpt proposes matching with partial term structures for which a specialized
unification procedure, called “simulation unification” [6], has been developed. Since matching
with partial term structures is a powerful feature that avoids many problems related to the
evolution of web data over time, we propose a language with similar features. However, our
language is an embedded domain-specific language (eDSL). Due to the embedding into the
functional logic programming language Curry [12], our language for XML processing has the
following features and advantages:

The selection and transformation of incompletely specified XML data is supported.
Due to the embedding into a universal programming language, the selected or transformed
data can be directly used in the application program.
Due to the use of advanced functional logic programming features, the implementation
is straightforward and can be easily extended with new features. Actually, this paper
contains the complete source code of the implementation.
The direct implementation in a declarative language results in immediate correctness
proofs of the implementation.

1 http://www.w3.org/TR/xpath
2 http://www.w3.org/XML/Query/
3 http://www.w3.org/TR/xslt

ICLP 2011

http://www.w3.org/TR/xpath
http://www.w3.org/XML/Query/
http://www.w3.org/TR/xslt


200 Declarative Processing of Semistructured Web Data

In the following, we present our language for XML processing together with their implementa-
tion. Due to lack of space, we have to omit some details about functional logic programming
in Curry and further features and properties of our eDSL. Interested readers find these in a
separate technical report [10].

2 Functional Logic Programming and Curry

Curry [12] is a declarative multi-paradigm language combining features from functional, logic,
and concurrent programming (recent surveys are available in [4, 9]). The syntax of Curry
is close to Haskell [14]. In addition, Curry allows free (logic) variables in conditions and
right-hand sides of defining rules. In contrast to functional programming and similarly to
logic programming, operations can be defined by overlapping rules so that they might yield
more than one result on the same input. For instance, the choice operation is predefined by:

x ? _ = x
_ ? y = y

Thus, the expression “0 ? 1” has two values: 0 and 1. If expressions have more than
one value, one wants to select intended values according to some constraints, typically in
conditions of program rules. A rule has the form “f t1 . . . tn | c = e” where the (optional)
condition c is a constraint, like an equational constraint e1 =:= e2 which is satisfied if both
sides are reducible to unifiable values. For instance, the rule

last xs | (ys++[z]) =:= xs = z where ys,z free

defines an operation to compute the last element z of a list xs based on the (infix) operation
“++” which concatenates two lists (in contrast to Prolog, free variables like ys or z need to
be declared explicitly to make their scopes clear).

In the following, we implement an eDSL for XML processing based on functional logic
programming features. To make this implementation as simple as possible, we exploit two
more recent features described in the following: functional patterns and set functions.

A functional pattern [2] is a pattern occurring in an argument of the left-hand side of
a rule containing defined operations (and not only data constructors and variables). For
instance,

last (xs++[e]) = e

is a rule with the functional pattern (xs++[e]) stating that last is reducible to e provided
that the argument can be matched against some value of (xs++[e]) where xs and e are free
variables. By instantiating xs to arbitrary lists, the value of (xs++[e]) is any list having e
as its last element. As we will see in this paper, functional patterns are a powerful feature to
express arbitrary selections in term structures. More details about their semantics and a
constructive implementation of functional patterns by a demand-driven unification procedure
can be found in [2].

Set functions [3] allow the encapsulation of nondeterministic computations in non-strict
functional logic languages. For each defined function f , fS denotes the corresponding set
function. fS encapsulates only the nondeterminism caused by evaluating f except for the
nondeterminism caused by evaluating the arguments to which f is applied. For instance,
consider the operation decOrInc defined by

decOrInc x = (x-1) ? (x+1)



Michael Hanus 201

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4}, i.e., the
nondeterminism caused by decOrInc is encapsulated into a set. However, “decOrIncS
(2?5)” evaluates to two different sets {1, 3} and {4, 6} due to its nondeterministic argument,
i.e., the nondeterminism caused by the argument is not encapsulated.

This paper contains the complete source code of our implementation. Actually, the
paper’s source text is a literate program [13] that is directly executable. In a literate Curry
program, all real program code starts with the special character “>”. Curry code not starting
with “>”, e.g., the example code shown so far, is like a comment and not required to run the
program. To give an example of executable code, we show the declaration of the module
XCuery for XML processing in Curry developed in this paper:

> module XCuery where
> import XML

Thus, we import the system module XML which contains an XML parser and the definition of
XML structures in Curry that are explained in the next section.

3 XML Documents

There are two basic methods to represent XML documents in a programming language: a
type-based or a generic representation [16]. In a type-based representation, each tagged XML
structure (like contacts, entry, name etc) is represented as a record structure of appropriate
type according to the XML schema. The advantage of this approach is that schema-correct
XML structures correspond to type-correct record structures. On the negative side, this
representation depends on the given XML schema. Thus, it is hardly applicable if the schema
is not completely known. Moreover, if the schema evolves, the data types representing the
XML structure must be adapted.

Due to these reasons, we prefer a generic representation where any XML document is
represented with one generic structure. Since any XML document is either a structure with
a tag, attributes and embedded XML documents (also call child nodes of the document), or
a text string, one can define the following datatype to represent XML documents:4

data XmlExp = XText String
| XElem String [(String,String)] [XmlExp]

Since it could be tedious to write XML documents with these basic data constructors, one
can define some useful abstractions for XML documents:

xtxt s = XText s

xml t xs = XElem t [] xs

Thus, we can specify the second entry structure of the XML document shown in Fig. 1 by:

xml "entry" [xml "name" [xtxt "Smith"],
xml "first" [xtxt "William"],
xml "nickname" [xtxt "Bill"],
xml "phone" [xtxt "+1-987-742-9388"]]

4 For the sake of simplicity, we ignore other specific elements like comments.

ICLP 2011



202 Declarative Processing of Semistructured Web Data

These definitions together with operations to parse and pretty-print XML documents are
contained in the system module XML of the PAKCS programming environment for Curry [11].
In principle, these definitions are sufficient for XML processing, i.e., to select and transform
XML documents. For instance, one can extract the name and phone number of an entry
structure consisting of a name, first name and phone number by the following operation:

getNamePhone
(xml "entry" [xml "name" [xtxt name],

_,
xml "phone" [xtxt phone]]) = name++": "++phone

Note that we use the abstractions xml and xtxt as functional patterns to provide a readable
notation for matching XML documents. Nevertheless, XML processing operations as defined
above have several disadvantages:

The exact structure of the XML document must be known in advance. For instance,
the operation getNamePhone matches only entries with three components, i.e., it fails on
both entries shown in Fig. 1.
In large XML documents, many parts are often irrelevant if one wants to select only
some specific information entities. However, one has to define an operation to match the
complete document.
If the structure of the XML document changes (e.g., due to the evolution of the web
services providing these documents), one has to update all patterns in the matching
operations which could be tedious and error prone for large documents.

As a solution to these problems, we propose in the next section appropriate abstractions that
can be used in patterns of operations for XML processing.

4 Abstractions for XML Processing

In order to define reasonable abstractions for XML processing, we start with a wish list.
Since we have seen that exact matchings are not desirable to process semistructured data,
we want to develop a language supporting the following features for pattern matching:

Partial patterns: allow patterns where only some child nodes are known.
Unordered patterns: allow patterns where child nodes can appear in any order.
Patterns at arbitrary depth: allow patterns that are matched at an arbitrary position in
an XML document.
Negation of patterns: allow patterns defined by the absence of tags or provide default
values for tags that are not present in the given XML document.
Transformation: generate new structures from matched patterns.
Collect matchings: accumulate results in a newly generated structure.

In the following, we show how these features can be supported by the use of carefully defined
abstractions as functional patterns and other features of functional logic programming.

4.1 Partial Patterns
As we have seen in the example operation getNamePhone above, one would like to select
some child nodes in a document independent of the availability of further components. Thus,
instead of enumerating the list of all child nodes as in the definition above, it would be
preferable to enumerate only the relevant child nodes. We support this by putting the
operator “with” in front of the list of child nodes:



Michael Hanus 203

getNamePhone
(xml "entry" (with [xml "name" [xtxt name],

xml "phone" [xtxt phone]])) = name++": "++phone

The intended meaning of “with” is that the given child nodes must be present but in between
any number of other elements can also occur.

We can directly implement this operator as follows:5

> with :: [a] → [a]
> with [] = _
> with (x:xs) = _ ++ x : with xs

Thus, an expression like “with [1,2]” reduces to any list of the form

x1:. . .:xm:1:y1:. . .:yn:2:zs

where the variables xi, yj , zs are fresh logic variables. Due to the semantics of functional
patterns, the definition of getNamePhone above matches any entry structure containing a
name and a phone element as children. Hence, the use of the operation with in patterns
avoids the exact enumeration of all children and makes the program robust against the
addition of further information elements in a structure.

A disadvantage of a definition like getNamePhone above is the fact that it matches only
XML structures with an empty attribute list due to the definition of the operation xml. In
order to support more flexible matchings that are independent of the given attributes (which
are ignored if present), we define the operation

> xml’ :: String → [XmlExp] → XmlExp
> xml’ t xs = XElem t _ xs

For instance, the operation getName defined by

getName (xml’ "entry" (with [xml’ "name" [xtxt n]])) = n

returns the name of an entry structure independent of the fact whether the given document
contains attributes in the entry or name structures.

4.2 Unordered Patterns
If the structure of data evolves over time, it might happen that the order of elements changes
over time. Moreover, even in some given XML schema, the order of relevant elements can
vary. In order to make the matching independent of a particular order, we can specify that
the required child nodes can appear in any order by putting the operator “anyorder” in
front of the list of child nodes:

getNamePhone
(xml "entry"

(with (anyorder [xml "phone" [xtxt phone],
xml "name" [xtxt name]]))) = name++": "++phone

5 The symbol “_” denotes an anonymous variable, i.e., each occurrence of “_” in the right-hand side of a
rule denotes a fresh logic variable.

ICLP 2011



204 Declarative Processing of Semistructured Web Data

Obviously, the operation anyorder should compute any permutation of its argument list.
In a functional logic language, it can be easily defined as a nondeterministic operation
by inserting the first element of a list at an arbitrary position in the permutation of the
remaining elements:

> anyorder :: [a] → [a]
> anyorder [] = []
> anyorder (x:xs) = insert (anyorder xs)
> where insert [] = [x]
> insert (y:ys) = x:y:ys ? y : insert ys

Thus, the previous definition of getNamePhone matches both entry structures shown in
Fig. 1.

4.3 Patterns at Arbitrary Depths
If one wants to select some information in deeply nested documents, it would be tedious to
define the exact matching from the root to the required elements. Instead, it is preferable to
allow matchings at an arbitrary depth in a document. Such matchings are also supported
in other languages like XPath since they ease the implementation of queries in complex
structures and support flexibility of the implementation w.r.t. to future structural changes
of the given documents. We support this feature by an operation “deepXml”: if deepXml
is used instead of xml in a pattern, this structure can occur at an arbitrary position in the
given document. For instance, if we define

getNamePhone
(deepXml "entry"

(with [xml "name" [xtxt name],
xml "phone" [xtxt phone]])) = name++": "++phone

and apply getNamePhone to the complete document shown in Fig. 1, two results are (nonde-
terministically) computed (methods to collect all those results are discussed later).

The implementation of deepXml is similar to with by specifying that deepXml reduces to
a structure where the node is at the root or at some nested child node:

> deepXml :: String → [XmlExp] → XmlExp
> deepXml tag elems = xml tag elems
> deepXml tag elems = xml’ _ (_ ++ [deepXml tag elems] ++ _)

Thus, an expression like “deepXml t cs” reduces to “xml t cs” or to a structure containing
this element at some inner position.

4.4 Negation of Patterns
As mentioned above, in semistructured data some information might not be present in a given
structure, like the email address in the second entry of Fig. 1. Instead of failing on missing
information pieces, one wants to have a constructive behavior in application programs. For
instance, one could select all entries with a missing email address or one puts a default
nickname in the output if the nickname is missing.

In order to implement such behaviors, one could try to negate matchings. Since negation
is a non-trivial subject in functional logic programming, we propose a much simpler but
practically reasonable solution. We provide an operation “withOthers” which is similar to



Michael Hanus 205

“with” but has a second argument that contains the child nodes that are present but not part
of the first argument. Thus, one can use this operation to denote the “unmatched” part of a
document in order to put arbitrary conditions on it. For instance, if we want to get the name
and phone number of an entry that has no email address, we can specify this as follows:

getNamePhoneWithoutEmail
(deepXml "entry"

(withOthers [xml "name" [xtxt name], xml "phone" [xtxt phone]] others))
| "email" ‘noTagOf‘ others = name++": "++phone

The useful predicate noTagOf returns true if the given tag is not a tag of all argument
documents (the operation tagOf returns the tag of an XML document):

> noTagOf :: String → [XmlExp] → Bool
> noTagOf tag = all ((/=tag) . tagOf)

Hence, the application of getNamePhoneWithoutEmail to the document in Fig. 1 returns a
single value.

The implementation of withOthers is slightly different from with since we have to
accumulate the remaining elements that are not part of the first arguments in the second
argument:

> withOthers :: [a] → [a] → [a]
> withOthers ys zs = withAcc [] ys zs
> where -- Accumulate remaining elements:
> withAcc prevs [] others | others=:=prevs++suffix = suffix
> where suffix free
> withAcc prevs (x:xs) others =
> prefix ++ x : withAcc (prevs++prefix) xs others
> where prefix free

Thus, an expression like “withOthers [1,2] os” reduces to any list of the form

x1:. . .:xm:1:y1:. . .:yn:2:zs

where os = x1:. . .:xm:y1:. . .:yn:zs. If we use this expression as a pattern, the semantics
of functional patterns ensures that this pattern matches any list containing the elements 1
and 2 where the variable os is bound to the list of the remaining elements.

4.5 Transformation of Documents
Apart from the inclusion of data selected in XML documents in the application program,
one also wants to implement transformations on documents. Such transformation tasks are
almost trivial to implement in declarative languages supporting pattern matching by using a
scheme like “transform pattern = newdoc” and applying the transform operation to the
given document. For instance, we can transform an entry document into another XML
structure containing the phone number and full name of the person by

transPhone (deepXml "entry" (with [xml "name" [xtxt n],
xml "first" [xtxt f],
xml "phone" phone])) =

xml "phonename" [xml "phone" phone, xml "fullname" [xtxt (f++’ ’:n)]]

ICLP 2011



206 Declarative Processing of Semistructured Web Data

If we apply transPhone to the document of Fig. 1, we nondeterministically obtain two new
XML documents corresponding to the two entries contained in this document.

4.6 Collect Matchings
In order to collect all matchings in a given document in a single new document, we have
to encapsulate the nondeterministic computations performed on the input document. For
this purpose, we can exploit set functions described above. Since set functions return an
unordered set of values, we have to transform this value set into an ordered list structure
that can be printed or embedded in another document. This can be done by the predefined
operation sortValues. Thus, if c denotes the XML document shown in Fig. 1, we can
use our previous transformation operation to create a complete table of all pairs of phone
numbers and full names by evaluating

xml "table" (sortValues (transPhoneS c))

Similarly, one can also transform XML documents into HTML documents by exploiting the
HTML library of Curry [8]. Furthermore, one can also nest set functions to accumulate
intermediate information. As an example, we want to compute a list of all persons together
with the number of their email addresses. For this purpose, we define a matching rule for
an entry document that returns the number of email addresses in this document by a set
function emailOfS :

getEmails (deepXml "entry" (withOthers [xml "name" [xtxt name]] os))
= (name, length (sortValues (emailOfS os)))

where emailOf (with [xml "email" email]) = email

In order to compute a complete list of all entries matched in a document c, we apply the set
function getEmailsS to collect all results in a list structure:

sortValues (getEmailsS c)

For our example document, this evaluates to [("Hanus",2),("Smith",0)].

5 Related Work

Since the processing of semistructured data is a relevant issue in current application systems,
there are many proposals for specialized languages or embedding languages in multi-purpose
programming languages. We discuss some related approaches in this section.

We have already mentioned in the beginning the languages XPath, XQuery, and XSLT for
XML processing supported by the W3C. These languages provide a different XML-oriented
syntax and use a navigational approach to select information rather than the pattern-oriented
approach we proposed. Since these are separate languages, it is more difficult to use them in
application programs written in a general purpose language where one wants to process data
available in the web.

The same is true for the language Xcerpt [5]. It is also a separate XML processing
language without a close connection to a multi-purpose programming language. In contrast
to XPath, Xcerpt proposes the use of powerful matching constructs to select information
in semistructured documents. Xcerpt supports similar features as our embedded language
but provide a more compact syntax due to its independence of a concrete base language. In
contrast to our approach, Xcerpt requires a dedicated implementation based on a specialized



Michael Hanus 207

unification procedure [6]. The disadvantages of such separate developments become obvious
if one tries to access the implementation of Xcerpt (which failed at the time of this writing
due to inaccessible web pages and incompatible compiler versions).

HaXML [16] is a language for XML processing embedded in the functional language
Haskell. It provides a rich set of combinators based on content filters, i.e., functions that map
XML data into collections of XML data. This allows an elegant description of many XML
transformations, whereas our rule-based approach is not limited to such transformations
since we have no restrictions on the type of data constructed from successful matchings.

Caballero et al. [7] proposed the embedding of XPath into the functional logic language
Toy that has many similarities to Curry. Similarly to our approach, they also exploit
nondeterministic evaluation for path selection. Due to the use of a functional logic language
allowing inverse computations, they also support the generation of test cases for path
expressions, i.e., the generation of documents to which a path expression can be applied.
Nevertheless, their approach is limited to the navigational processing of XPath rather than
a rule-based approach as in our case. The same holds for FnQuery [15], a domain-specific
language embedded in Prolog for the querying and transformation of XML data.

6 Conclusions

We have presented a rule-based language for processing semistructured data that is imple-
mented and embedded in the functional logic language Curry. The language supports a
declarative description to query and transform such data. It is based on providing operations
to describe partial matchings in the data and exploits functional patterns and set functions
for the programming tasks. Due to its embedding into a general-purpose programming
language, it can be used to further process the selected data in application systems or one
can combine semistructured data from different sources. Moreover, it is easy to extend our
language with new features without adapting a complex implementation.

The simplicity of our implementation together with the expressiveness of our language
demonstrate the general advantages of high-level declarative programming languages. In
order to check the usability of our language, we applied it to extract information provided by
our university information system6 in XML format into a curricula and module information
system7 that is implemented in Curry. In this application it was quite useful to specify
only partial patterns so that most of the huge amount of information contained in the XML
document could be ignored.

Although our implementation heavily exploits nondeterministic computations, e.g., for
matching in partially specified or deep structures, our initial experiments show that it is
practically useful. The processing time in these tests to select or transform documents is almost
equal or smaller than the time to parse the document by an already given (deterministic!)
XML parser.

For future work, we intend to apply our language to more examples in order to enrich
the set of useful pattern combinators. Moreover, it would be interesting to generate more
efficient implementations by specializing functional patterns (e.g., by partial evaluation w.r.t.
the given definitions, or by exploiting the XML schema if it is precisely known in advance).

6 http://univis.uni-kiel.de/
7 http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/

ICLP 2011

http://univis.uni-kiel.de/
http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/


208 Declarative Processing of Semistructured Web Data

References
1 S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistruc-

tured Data and XML. Morgan Kaufmann, 2000.
2 S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of

the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

3 S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declara-
tive Programming (PPDP’09), pages 73–82. ACM Press, 2009.

4 S. Antoy and M. Hanus. Functional logic programming. Communications of the ACM,
53(4):74–85, 2010.

5 F. Bry and S. Schaffert. A gentle introduction to Xcerpt, a rule-based query and transfor-
mation language for XML. In Proceedings of the International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web (RuleML’02), 2002.

6 F. Bry and S. Schaffert. Towards a declarative query and transformation language for
XML and semistructured data: Simulation unification. In Proceedings of the International
Conference on Logic Programming (ICLP’02), pages 255–270. Springer LNCS 2401, 2002.

7 R. Caballero, Y. García-Ruiz, and F. Sáenz-Pérez. Integrating XPath with the functional-
logic language Toy. Technical report sic-05-10, Univ. Complutense de Madrid, 2010.

8 M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92.
Springer LNCS 1990, 2001.

9 M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International
Conference on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670, 2007.

10 M. Hanus. Declarative processing of semistructured web data. Technical report 1103,
Christian-Albrechts-Universität Kiel, 2011.

11 M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at http:
//www.informatik.uni-kiel.de/~pakcs/, 2010.

12 M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available at
http://www.curry-language.org, 2006.

13 D.E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984.
14 S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-

bridge University Press, 2003.
15 D. Seipel, J. Baumeister, and M. Hopfner. Declaratively querying and visualizing knowledge

bases in XML. In Applications of Declarative Programming and Knowledge Management
(INAP/WLP 2004), pages 16–31. Springer LNCS 3392, 2005.

16 M. Wallace and C. Runciman. Haskell and XML: Generic combinators or type-based
translation? In Proc. of the ACM SIGPLAN International Conference on Functional
Programming (ICFP’99), pages 148–159. ACM Press, 1999.

http://www.informatik.uni-kiel.de/~pakcs/
http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org

	Motivation
	Functional Logic Programming and Curry
	XML Documents
	Abstractions for XML Processing
	Partial Patterns
	Unordered Patterns
	Patterns at Arbitrary Depths
	Negation of Patterns
	Transformation of Documents
	Collect Matchings

	Related Work
	Conclusions

