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Abstract
Early validation of requirements is crucial for the rigorous development of software. Without
it, even the most formal of the methodologies will produce the wrong outcome. One successful
approach, popularised by some of the so-called lightweight formal methods, consists in generating
(finite, small) models of the specifications. Another possibility is to build a running prototype
from those specifications. In this paper we show how to obtain executable prototypes from formal
specifications written in an object oriented notation by translating them into logic programs.
This has some advantages over other lightweight methodologies. For instance, we recover the
possibility of dealing with recursive data types as specifications that use them often lack finite
models.
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1 Introduction

Lightweight formal methods [12, 9] have become relatively popular thanks to their success
in early validation of requirements, a smooth learning curve and the availability of usable
tools. This simplicity is obtained by replacing formal proof – which often demands human
intervention – by model checking, but this also implies giving up correctness in favour of a
less stringent criterion for models.

Consider, for example, the stepwise specification of queues in Alloy [13]. The specifier
might start by just sketching the interface up, like in

module myQueue
sig Queue { root: Node }
sig Node { next: Node }

that is, stating that queues must have a root node and nodes will have a next node to follow.
The description can be “validated” by fixing a number of Queue and Node individuals and
letting a tool like Alloy Analyzer [2] model check the specification and show graphically
the different instances found. Of course, some of these instances will be inconsistent with
the intuition in the specifier’s mind – e.g. unreachable nodes or cyclic queues, that can be
revealed with very small models. Further constraints, like

fact allNodesBelongToOneQueue { all n:Node | one q:Queue | n in q.root .∗next }
fact nextNotCyclic {no n:Node | n in n.^next}

can be added to the myQueue module in order to supply some of the pieces missing in the
original requirements. The first fact states that for every node there must be some queue

© Ángel Herranz and Julio Mariño;
licensed under Creative Commons License ND

Technical Communications of the 27th International Conference on Logic Programming (ICLP’11).
Editors: John P. Gallagher, Michael Gelfond; pp. 95–105

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

{aherranz,jmarino}@fi.upm.es
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.95
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


96 Synthesis of Logic Programs from OO Specifications

such that the node lies somewhere in the transitive-reflexive closure of the next relation
starting with the root of that node. The second one says that no node can be in the transitive
closure of the next relation starting in itself. Model checking the refined specification will
generate less instances, thus allowing to explore bigger ones, which will hopefully lead to
reveal subtler corners in the requirements.

As said before, this approach is extremely attractive: requirements are refined in a
stepwise manner guided by counterexamples found by means of model checking, and the
whole process is performed with the help of graphical tools. However, there are also some
limitations inherent to this approach. Leaving aside the fact that total correctness of the
specification is abandoned in favour of a more relaxed notion of being not yet falsified by a
counterexample, which can make the whole enterprise unsuitable for safety critical domains,
the use of model checking rather than proof based techniques also brings other negative
consequences, such as limiting the choice of data types in order to keep models finite, making
extremely difficult to model and reason over recursive data types like naturals, lists, trees,
etc. (See [13], Ch. 4, Sec. 8.)

A natural alternative to model checking the initial requirements is to produce an executable
prototype from them. Using the right language it is possible to obtain recursive code and
validation can be guided by testing, which might also be automated by tools such as
QuickCheck [6]. Regarding how to obtain the prototypes, there are several possibilities.
One of them is to follow the correct by construction slogan and to produce code from the
specification, either by means of a transformational approach that often requires human
intervention, or by casting the original problem in some constructive type theory that will
lead directly to an implementation in a calculus thanks to the Curry-Howard isomorphism
[21, 5, 4, 20].

Another possibility is to use logic programming. In this case, executable specifications
are obtained free of charge, as resolution or narrowing will deal with the existential variables
involved in any implicit (i.e. non-constructive) specification. Readers familiar with logic
programming will remember the typical examples – obtaining subtraction from addition
for free, sorting algorithms from sorting test, etc. – and those familiar with logic program
transformation techniques will also recognise that these can be used to turn those naive
implementations into decent prototypes. However, when it comes to practical usage, none of
these formalisms can compete with the lightweight methods above, due to the great distances
separating them from the notations used for modelling object oriented software.

This paper studies the synthesis of logic programs from specifications written in an
object oriented notation. The specification language, Clay, is being designed around two
driving ideas. First, the language must be small but make room for the basic constructs in
object oriented programming. Second, specifications must admit at least one translation into
executable prototypes to allow the specifier to interactively validate her own specifications.
We contribute, on one hand, a static theory of types and inheritance that somehow copes
with bridging the aforementioned gap between object orientation and logic programming,
and, on the other, a dynamic part that deals with search in the presence of equality and
inheritance (Section 3). To support our contributions we review the examples of the prototypes
automatically generated by our tool (Section 4).

2 Object Oriented Specifications in Clay

Clay is a stateless object oriented formal notation, a class-based language with a nominal
type system. Classes are defined as algebraic types in the form of case classes: complete and
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class BSTInt {
state Empty { }
state Node { data : Int , left : BSTInt, right : BSTInt }
modifier insert (x : Int ) {
post { self : Empty ∧

result = BSTInt.mkNode(x,BSTInt.mkEmpty,BSTInt.mkEmpty)
∨ self : Node ∧

( x < self .data : True ∧
result = BSTInt.mkNode(self.data,self. left . insert (x) , self . right )

∨ x = self .data ∧ result = self
∨ x < self .data : False ∧

result = BSTInt.mkNode(self.data,self. left , self . right . insert (x))) }
}
modifier remove (x : Int ) {
post { result . contains(x) : False ∧ result . insert (x)=self}

}
observer contains (x : Int ) : Bool {
post { self : Empty ∧ result : False

∨ self : Node ∧ x = self.data ∧ result : True
∨ self : Node ∧ x < self.data : True ∧ result = self . left . contains(x)
∨ self : Node ∧ x < self.data : False ∧ result = self . right . contains(x) }

}
}

Figure 1 Binary search trees in Clay

disjoint subclasses of the defining class. Classes can be extended by subclassing. Methods
are specified with pre and postconditions, first order formulae involving self (the recipient),
parameters and result (the resulting object). Atomic formulae are equalities (=) and class
membership ( :).

An interlingua [3] declarative semantics for Clay is provided by translation into first-order
logic. Clay tools generate an axiomatisation in Prover9/Mace4 [22] syntax. Then, early
detection of inconsistencies is achieved by the combination of automatic theorem proving
(Prover9) and model checking (Mace4) of the first order logic theories that reflects the
structure of Clay specifications. For the purposes of this paper, the move to logic program
synthesis requires, on the front-end of the tools, to take some simplifying decisions in order
to keep the resulting theory tractable and readable: no multiple inheritance, no overloading
(just method refinement) and no parametric polymorphism.

Figures 1 and 2 contain examples of Clay specifications that will guide the whole paper.

2.1 Modelling Data
Let us start with a specification of binary search trees of integers (Figure 1).1 Instances of a
class are the disjoint and complete sum of the instances of its case classes (indicated with
keyword state due to their similarity to the design pattern State [8]): if t is an instance of
BSTInt (t : BSTInt) then it is an instance of Empty or, exclusively, of Node. The following
Clay formula expresses it formally:

∀ t : BSTInt ((t : Empty ∨ t : Node) ∧ t : Empty ⇔ ¬ t : Node)

1 Clay allows parametric polymorphism but we have not used this feature for the sake of conciseness.
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class Cell {
state CellCase { contents : Int }
constructor mkCell {
post { result .contents = 0 }

}
observer get : Int {
post { result = self .contents }

}
modifier set (v : Int ) {
post { result .contents = v }

}
}

class ReCell <: Cell {
state ReCellCase { backup : Int }
constructor mkReCell {
post { result = Cell.mkCell ∧

result .backup = result .contents }
}
modifier set (v : Int ) {
post { result .backup = self .contents }

}
modifier restore {
post { result .contents = self .backup ∧

result .backup = self .backup }
}

}

Figure 2 Inheritance in Clay

The case classes Empty and Node introduce the constructor methods mkEmpty and mkNode.
Both are messages that can be sent to the object BSTInt (classes are objects in Clay):
BSTInt.mkEmpty creates an instance of the case class Empty and
BSTInt.mkNode(42,BSTInt.mkEmpty,BSTInt.mkEmpty) creates an instance of Node.
Composition Composition is represented by fields defined in a case class. Those fields are

methods that project the encapsulated information of its case. In our example the result
of the expression BSTInt.mkNode(42,l,r).data is 42.

Inheritance Classes can be extended with subclasses that inherit all the properties of the
superclass. In Figure 2, class ReCell extends Cell and therefore its instances obey the
property: ∀ c : ReCell (c : CellCase).

Inheritance induces a subtype relation (<:) with all its expected laws: reflexivity, transitivity
and subsumption. The most important aspect of this relation is that subclasses cannot inval-
idate by overriding any property specified in a superclass, otherwise the whole specification
is considered inconsistent.

This approach is essential when we are specifying in the large: the specifier needs to
reason locally to a class and a subclass cannot show a behaviour that forces the specifier to
take into account all the subclasses. The approach adds another advantage: specifications can
be much more concise since it is not needed to state already stated properties in superclasses.
The main drawback is certain loss of flexibility but, in our view, the decision pays back.

The Cell and ReCell classes in Figure 2 are brought from [1]. Instances of Cell are
storage-cell objects encapsulating a natural number that can be changed (set) and read (get).
The extension of Cell with a restore option yields ReCell. We can observe the conciseness of
the overriding of set in ReCell since properties of Cell are inherited.

2.2 Modelling Behaviour
Methods are specified with first order formulae that relate the receiver of the message ( self )
and the message’s parameters with the answer to the message ( result ). Primitive predicates
include equality and class membership.

Class membership is mainly used to do pattern matching. In the specification of method
insert we can see how antecedents of implications distinguish between empty and nonempty
trees ( self : Empty and self : Node).
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Equality is particularly interesting in Clay. The predicate is implicitly indexed by the
minimum subtype of the compared instances in the context in which the formula appears.
The rationale behind this decision has to do with reasoning locally, a more dynamic equality
would lead unexpected results in the specifier context. In the insert example, the minimum
type of result and self in the first disjunct of the post is BSTInt. The semantics establishes
that no properties of self other than those reachable from BSTInt are enforced in result .
In the Cell/ReCell example, formula Cell .mkCellCase(42) = ReCell.mkReCell.set(13).set(42)
holds, as only the state relevant in class Cell – the smallest common subtype – is considered.

Keywords modifier and observer are merely type informative (the result of a modifier is
an instance of the class being specified) and has no influence in the semantics of the methods.

In the binary trees example, the specification of insert and contains are, so to say, explicit
as they describe recursively all the possible situations. The specification of remove, however,
is implicit: the result is specified by means of a condition that the result must meet with no
additional clues.

2.3 Interacting with Clay
The prototype generated by our synthesiser supports interacting with Clay specifications by
asking it to reduce a Clay object expression to a normal representation. We describe now
some use cases and in Section 4 we will check the actual performance of the synthesised
prototype with those use cases.
Inheritance Classes Cell and ReCell will be our first guiding example. We will inter-

act with Clay to check that the compiler is enabling the specifier to write concise
specifications with safe inheritance, and we will see the answers to expressions like
ReCell.mkReCell.set(0). set (1) .get and ReCell.mkReCell.set(0). set (1) . restore .get.

Recursive Specifications More interesting examples are the recursive definitions of methods
insert and contains of binary search trees in Figure 1. We will interact with the synthesised
prototype to check that recursive definitions can be executed.

Implicit Specifications Our last guiding example will be the implicit specification of method
remove in the class BSTInt in Figure 1. We will execute some examples sending the
message remove to some binary search trees.

Requirements Validation The interaction with Clay should help the specifiers to gain con-
fidence in their specifications. We will detect an error in our previous specifications.

3 Translating Clay Specifications into Logic Programs

The distance between Clay and Prolog is big enough to make the the translation far from
trivial and difficult to follow. Its full formalisation can be found in [10]. This section discusses
the intuitions behind the main decisions.

Given a Clay specification we will synthesise facts that represent its abstract syntax tree:
classes, inheritance, case classes, fields, and pre- and post-conditions of methods. Figure 3
describes the meaning of the target predicates.

The heart of our translator is a common theory for all specifications: the Clay theory.
The most important predicates of this axiomatisation are (instanceof/2, reduce/2, and eq/3),
definitions that rely on the facts translated from the source specifications (Figure 3). Their
meaning is:

Predicate instanceof(NF,A) is a generator of instances NF of a class A. NF is a normal
form of an instance of A. These normal forms are flexible representation of instances as
incomplete data structures and will be presented in Sections 3.1 and 3.2.
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100 Synthesis of Logic Programs from OO Specifications

class(C) C is a Clay’s class identifier.
inherits(A,[B]) B is the superclass of A
cases(C,Cs) Cs is the list with case classes of class C
fields(C,Fs) Fs is the association list with the field names and field types of case class C
msgtype(C,M) M is the message identifier of a method defined or overridden in class C
pre(C,S,M,As) Precondition for sending message M with arguments As to an instance S

of class C
post(C,S,M,As,R) Postcondition that establishes that R is the resulting instance of sending

message M with arguments As to instance S of class C

Figure 3 Representing Clay in Prolog.

Predicate eq(A,NF1,NF2), Clay’s equality, decides if the representations (NF1 and NF2)
of two instances are indistinguishable in class A.
Finally, predicate reduce(E,NF) reduces any Clay object expression E to its normal form
NF. Predicates eq and reduce will be presented in Sections 3.2 and 3.3.

3.1 Representing Clay Instances in Prolog

We have mentioned that the predicate reduce/2 reduces a Clay object expression to a normal
form. Clay object expressions have a straightforward representation in Prolog:

A class expression ci<C1, . . ., Cn> is represented by the Prolog term
(ci<C1, . . ., Cn>)# = ci#(C#

1 , . . ., C#
n ).

A class identifier ci is represented by a valid Prolog constant ci# by quoting its lexeme.
A class variable cv (an object variable ov) is represented by a valid Prolog variable cv#

(ov#) by prefixing its name with “_”: _cv (_ov).
A send expression o.mi(o1, . . ., on) is represented by the Prolog term

(o.mi(o1, . . ., on))# = o#<-mi#(o#
1 , . . ., o#

n ).
A message identifier mi is represented by a valid Prolog constant mi# by using its lexeme.

To describe how the generated prototype represents the instances of our language in normal
form we will use the example of restorable cells (instances of ReCell). We need to capture all
the information of known superclasses (Cell ) and to capture all the information about the
specific case class (ReCell).

With no multiple inheritance, a sorted linear structure can represent the classes of
an instance. Therefore, we can use a list where each element contains the part of the
representation for a given class of the instance: (C,S,F) where C is the class, S is the
particular case class, and F is an association list from field names to the representation of
their instances. Let us show the representation of Cell .mkCell:

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])])])]

The list contains one element since the object is an instance of just one class (Cell ).
Under subtyping, during a deduction process where a cell with 42 is expected an instance

of ReCell could appear. If we follow our rules, the representation of ReCell.mkReCell.set(42)
would be:

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])])]),

(’ReCell’,’ReCellCase’,[(backup,[(’Int’,’Int’,[0])])])]
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The representation of the cell with 42 and the instance of ReCell are partially the same but
the latter does not fit in the former. This is something that we would expect to happen since
both instances represent the same information with respect to the properties of Cell .

We propose to make room for yet unknown information of subclasses and to use an
incomplete data structure where the incomplete part represents the room for the information
of the potential subclasses. The representation of Cell .mkCell would be

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])|_])])|_]

and for the instance of ReCell we would have the following representation:

[(’Cell’,’CellCase’,[(contents,[(’Int’,’Int’,[42])|_])]),

(’ReCell’,’ReCellCase’,[(backup,[(’Int’,’Int’,[0])|_])])|_]

Apart from carrying all the information needed by methods specified in the superclasses,
our normal form has the following properties:

Information about case classes allows us to reflect the disjoint sum (case classes) of
products (fields).
The incomplete part might be instantiated with data of an instance of a subclass (like the
backup of ReCell) during the deduction process. The most interesting benefit is that the
instantiation can be implemented with the unification of our logic language engine. The
example above shows how the instance of ReCell fits, by unification, in the cell with 42.

Predefined Integers

The predefined class Int encapsulates integers that get translated into Prolog integers
managed via finite domain constraints. This illustrates another technique that can be applied
in the translation when the target language has declarative extensions. Previous versions of
the same specification used a Peano representation for naturals (predefined class Nat) as a
way of obtaining a complete theory for numbers. The experiments in Section 4 show drastic
gains over our previous implementation presented in [11].

3.2 Atomic Formulae (Instance of and Equality)
The predicate “ :” (instance of) is translated into the Prolog predicate instanceof/2. Which
generates the representation of all instances (first argument) of all classes (second argument)
of a specification. Thanks to our incomplete structures every instance of a subclass is an
instance of a superclass, a technique that makes the desirable property of subsumption to be
a theorem in our Prolog axiomatisation.

Clay equality (=) is the other predicate used in the atomic formulae of Clay in this work.
Our translation of Clay equality into Prolog consists of two steps: a reduction of the object
expressions to normal form and the unification of the obtained representations.

Let us see a description of the implementation of the reduction step and postpone the
formalisation of the translation of the equality literals to Section 3.3. Predicate reduce/2
relates terms that represent abstract syntax trees of Clay expressions with their normal form.
The most important clause of reduce/2 defines the reduction of sending a message (M) to an
object expression O. Functor .-, in infix form, represents the send operator of Clay:

reduce(O<--M,NF) :- M =.. [Mid|Args],

reduce(O,ONF), reduceall(Args,ArgsNF),

knownclasses(ONF,Cs),

checkpreposts(Cs,ONF,Mid,ArgsNF,NF,defined).
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modifier insert (x : Int ) {
post {
self : Empty ∧
result = BSTInt.mkNode(

x,
BSTInt.mkEmpty,
BSTInt.mkEmpty)

∨
self : Node ∧
(x < self .data : True ∧

result = BSTInt.mkNode(
self .data,
self . left . insert (x) ,
self . right )

∨ ...) }
}

post(’BSTInt’,_s,insert,[_x],_r) :-

instanceof(_s,’Empty’),

reduce(’BSTInt’<--mkNode(

_x,

’BSTInt’<--mkEmpty,

’BSTInt’<--mkEmpty),

_NF_BSTInt_mkNode),

eq(’BSTInt’,_r,NF_BSTInt_mkNode).

post(’BSTInt’,_s,insert,[_x],_r) :-

instanceof(_s, ’Node’),

reduce(_x < _s<--data,_NF__x_le),

instanceof(_NF__x_le,’True’),

reduce(’BSTInt’<--mkNode(

_s<--data,

_s<--left<--insert(_x),

_s<--right),

_NF_BSTInt_mkNode),

eq(’BSTInt’, _r, _NF_BSTInt_mkNode).

...

Figure 4 Translation of insert .

modifier remove (x : Int ) {
post { result . contains(x) : False

∧ result . insert (x)=self
}
}

post(’BSTInt’,_s,remove,[_x],_r) :-

reduce(_r<--contains(_x), _NF__r_contains),

instanceof(_NF__r_contains, ’False’),

reduce(_r<--insert(_x), _NF__r_insert),

eq(’BSTInt’,_NF__r_insert,_s).

Figure 5 Translation of remove.

Predicate reduceall/2 reduces a list of expressions, the second argument of knownclasses/2
contains the known classes (Cs) of the recipient of the message, and checkpreposts checks
pre- and post-conditions of every class of Cs in which method Mid is defined.

We already mentioned in Section 2 the danger of overriding the properties of methods
in subclasses: the practical impossibility of reasoning in large programs. The above imple-
mentation of predicate reduce/2 will fail if any postcondition in the inheritance hierarchy is
inconsistent with the postconditions specified in superclasses.

3.3 Translation of Pre- and Post-conditions
The translation of formulae takes into account that objects involved in atomic predicates
must be reduced. The translation of non-atomic formulae are directly translated into first-
order logic formulae resulting in extended programs (sets of implications with an arbitrary
first-order formulae in the body). Then, a Lloyd-Topor transformation [17, 18] is applied to
obtain a logic program.

Figures 4 and 5 present, in parallel, the correspondence between the Clay specification of
methods insert and remove of BSTInt and the automatically synthesised Prolog code.
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4 Experimental Results

Let us get back to the problems posed in Section 2.3. Relevant parts of the code obtained for
the recursive definition of insert are shown in Figure 4. We have automatically generated up
to 4000 trees with up to 80 nodes with a maximum depth of 10. The insertion of elements
works properly and the execution time in the worst case is less than 1000 milliseconds.

The second question was whether Clay would be able to generate an executable prototype
from the implicit specification of the remove method for binary search trees. The code
obtained is shown in Figure 4.

Running tests on this specification shows several problems. First, the logic program
obtained from the specification seemed to be only partially correct. Given a (valid) binary
insertion tree and one of its elements, the returned tree was, in some cases, a tree meeting
the specification but failed in the rest.

Analysis of the tests revealed that the prototype was working properly exactly in those
cases where the element to remove was at the leaves of the structure — i.e. in a node with
two empty subtrees as children. This solves the mystery: the specification for remove uses
predefined (structural) equality while the specifier was probably thinking in the intended
set semantics for the trees as collections. The order in which elements are stored in the
tree affects its actual shape. That is why only elements that make their way down to the
“bottom” of the structure via method insert meet the specification of remove.

In other words, the specification was flawed and the execution allowed us to spot the
bug. There are several ways to solve the problem. One of them is, of course, to use a self
normalizing data structure – balanced tree, heap. . . – for which predefined equality behaves
as set equality. A quicker fix – less efficient – is to flatten both sides of the equality:

modifier remove (x : Int ) {
post { result . contains(x) : False ∧ result . insert (x) . flatten () = self . flatten ()}

}

where flatten is an observer defined recursively in the obvious way:

observer flatten () : List <Int> {
post { self : Empty ∧ result = []

∨ self : Node ∧ result = self . left . flatten .append([] .cons( self .data)) .

append(self . right . flatten ) }
}

We show now the effects of the safe inheritance:

?- reduce(’Cell’<--mkCellCase(0),R).

R = ’CellCase’{contents : 0}

?- reduce(’Cell’<--mkCellCase(0)<--set(1)),R).

R = ’CellCase’{contents : 1}

?- reduce(’Cell’<--mkCellCase(0)<--set(1)<--get,R).

R = 1

?- reduce(’ReCell’<--mkReCell<--set(0)<--set(1)<--restore<--get,R).

R = 0

?- reduce(’Cell’<--mkCell<--set(0)<--set(1)<--restore<--get,R).

no

The table below shows performance figures obtained in an Intel Dual Core T7200@2.00GHz,
with 4096KB of cache and 2GB of RAM running GNU/Linux 2.6.32-25 SMP and SWI-Prolog
v. 5.10.0. The depth limit used for the iterative deepening strategy for predicate instanceof
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was 38. The full Clay code for these examples, their translation into Prolog and the Prolog
implementation of the Clay theory can be found at http://babel.ls.fi.upm.es/~angel.

Test Time (ms.)
Generation of trees (1000 trees) 202
Creation of trees (15 insertions) 929
Removing leaf from tree (1 node) 0
Removing leaf from tree (3 nodes) 391
Removing leaf from tree (7 nodes) 7211
Removing leaf from tree (15 nodes) 18300

5 Related Work and Conclusions

We have presented the compilation scheme of an object oriented formal notation into
logic programs. This allows the generation of executable prototypes that help in validating
requirements, e.g. by means of automated test generation. We have emphasized the generation
of code from implicit method specifications, specially in presence of recursive definitions,
something which is seldom supported by other lightweight methods and tools.

Early experiments with our prototype compiler show the feasibility of the approach,
but also the limitations of a naive application of Prolog’s standard search mechanisms. In
fact, obtaining an efficient search scheme is one of the challenges for future research. Our
current implementation combines techniques such as the Lloyd-Topor transforms of first-order
formulae and iterative deepening search for achieving completeness in some examples.

We expect to increase efficiency with the use of constructive negation and also with
techniques that allow for lazy instance generation, that is, coroutining the logic code that
implements quantification via instance generation with the one that implements the implicit
postconditions. More mature tools, like ProB [15, 16] already take advantage of these.

One improvement that has already been incorporated in this version is the use of
constraints for arithmetic. A previous version used a Peano representation for naturals
(predefined class Nat) as a way of obtaining a complete theory for numbers. Now, predefined
class Int encapsulates integers that get translated into Prolog integers managed via finite
domain constraints. The tests show drastic gains over our previous implementation.

One aspect hard to implement properly is nondeterminism. If the specs are assumed
correct, then it suffices to choose one interpretation at random to obtain an executable
prototype. This can be achieved, for instance, by limiting nondeterminism in the logic
program generated by always choosing the first solution at any choice point.

But if the goal is to use the prototypes for requirement validation, then choosing the good
one by chance does not help. In this case, interpretations must be generated randomly, but
any of these must be internally consistent, i.e. methods intended to be deterministic must
always return the same answer in each interpretation. Ensuring this in Prolog is trickier and
can be achieved, for instance, using tabulation techniques.

Certain features of object oriented programming (e.g. mutable state) have been left out
of this presentation. Studying the introduction of state in our code generation scheme would
help in applying the ideas presented in this paper to other object oriented formal notations
like VDM++, Object-Z, Troll or OASIS [7, 23, 14, 19].

http://babel.ls.fi.upm.es/~angel
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