
Explicit Linear Kernels via Dynamic Programming∗

Valentin Garnero1, Christophe Paul1, Ignasi Sau1, and
Dimitrios M. Thilikos1,2

1 AlGCo project-team, CNRS and Université de Montpellier 2, LIRMM,
Montpellier, France
FirstName.FamilyName@lirmm.fr

2 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece

Abstract
Several algorithmic meta-theorems on kernelization have appeared in the last years, starting with
the result of Bodlaender et al. [FOCS 2009] on graphs of bounded genus, then generalized by
Fomin et al. [SODA 2010] to graphs excluding a fixed minor, and by Kim et al. [ICALP 2013]
to graphs excluding a fixed topological minor. Typically, these results guarantee the existence
of linear or polynomial kernels on sparse graph classes for problems satisfying some generic
conditions but, mainly due to their generality, it is not clear how to derive from them constructive
kernels with explicit constants.

In this paper we make a step toward a fully constructive meta-kernelization theory on sparse
graphs. Our approach is based on a more explicit protrusion replacement machinery that, instead
of expressibility in CMSO logic, uses dynamic programming, which allows us to find an explicit
upper bound on the size of the derived kernels. We demonstrate the usefulness of our techniques
by providing the first explicit linear kernels for r-Dominating Set and r-Scattered Set on
apex-minor-free graphs, and for Planar-F-Deletion on graphs excluding a fixed (topological)
minor in the case where all the graphs in F are connected.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases parameterized complexity, linear kernels, dynamic programming, protru-
sion replacement, graph minors

Digital Object Identifier 10.4230/LIPIcs.STACS.2014.312

1 Introduction

Motivation. Parameterized complexity deals with problems whose instances I come equipped
with an additional integer parameter k, and the objective is to obtain algorithms whose
running time is of the form f(k) · poly(|I|), where f is some computable function (see [6, 7]
for an introduction to the field). We will be only concerned with problems defined on graphs.
A fundamental notion in parameterized complexity is that of kernelization, which asks for
the existence of polynomial-time preprocessing algorithms that produce equivalent instances
whose size depends exclusively (preferably polynomially or event linearly) on k. Finding

∗ This work was supported by the ANR project AGAPE (ANR-09-BLAN-0159) and the Languedoc-
Roussillon Project “Chercheur d’avenir” KERNEL. The fourth author was co-financed by the E.U.
(European Social Fund - ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding
Program: “Thales. Investing in knowledge society through the European Social Fund”.

© Valentin Garnero, Christophe Paul, Ignasi Sau, and
Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

31st Symposium on Theoretical Aspects of Computer Science (STACS’14).
Editors: Ernst W. Mayr and Natacha Portier; pp. 312–324

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2014.312
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 313

kernels of size polynomial or linear in k (called linear kernels) is one of the major goals of
this area.

An influential work in this direction was the linear kernel of Alber et al. [2] for Dominating
Set on planar graphs, which was generalized by Guo and Niedermeier [11] to a family of
problems on planar graphs. Several algorithmic meta-theorems on kernelization have appeared
in the last years, starting with the result of Bodlaender et al. [3] on graphs of bounded genus.
After that, similar results have been obtained on larger sparse graph classes, such as graphs
excluding a minor [9] or a topological minor [14].

Typically, the above results guarantee the existence of linear or polynomial kernels on
sparse graph classes for a number of problems satisfying some generic conditions but, mainly
due to their generality, it is hard to derive from them constructive kernels with explicit
constants. The main reason behind this non-constructibility is that the proofs rely on a
property of problems called Finite Integer Index (FII) that, roughly speaking, allows to
replace large “protrusions” (i.e., large subgraphs with small boundary to the rest of the
graph) with “equivalent” subgraphs of constant size. This substitution procedure is known
as protrusion replacer, and while its existence has been proved, so far, there is no generic
way to construct it. Using the technology developed in [3], there are cases where protrusion
replacements can become constructive given the expressibility of the problem in Counting
Monadic Second Order (CMSO) logic. This approach is essentially based on extensions of
Courcelle’s theorem [4] that, even when they offer constructibility, it is hard to extract from
them any explicit constant that upper-bounds the size of the derived kernel.

Results and techniques. In this article we tackle the above issues and make a step toward
a fully constructive meta-kernelization theory on sparse graphs with explicit constants. For
this, we essentially substitute the algorithmic power of CMSO logic with that of dynamic
programming on graphs of bounded decomposability (i.e., bounded treewidth). Our approach
provides a dynamic programming framework able to construct a protrusion replacer for a
wide variety of problems.

Loosely speaking, the framework that we present can be summarized as follows. First of all,
we propose a general definition of a problem encoding for the tables of dynamic programming
when solving parameterized problems on graphs of bounded treewidth. Under this setting,
we provide general conditions on whether such an encoding can yield a protrusion replacer.
While our framework can also be seen as a possible formalization of dynamic programming,
our purpose is to use it for constructing protrusion replacement algorithms and linear kernels
whose size is explicitly determined.

In order to obtain an explicit linear kernel for a problem Π, the main ingredient is to prove
that when solving Π on graphs of bounded treewidth via dynamic programming, we can use
tables such that the maximum difference between all the values that need to be stored is
bounded by a function of the treewidth. For this, we prove in Theorem 13 that when the
input graph excludes a fixed graph H as a (topological) minor, this condition is sufficient for
constructing an explicit protrusion replacer algorithm, i.e., a polynomial-time algorithm that
replaces a large protrusion with an equivalent one whose size can be bounded by an explicit
constant. Such a protrusion replacer can then be used, for instance, whenever it is possible
to compute a linear protrusion decomposition of the input graph (that is, an algorithm that
partitions the graph into a part of size linear in O(k) and a set of O(k) protrusions). As
there is a wealth of results for constructing such decompositions [3, 8, 9, 14], we can use them
as a starting point and, by applying dynamic programming, obtain an explicit linear kernel
for Π.

STACS’14



314 Explicit Linear Kernels via Dynamic Programming

We demonstrate the usefulness of this general strategy by providing the first explicit
linear kernels for three distinct families of problems on sparse graph classes. On the one hand,
for each integer r > 1, we provide a linear kernel for r-Dominating Set and r-Scattered
Set on graphs excluding a fixed apex graph H as a minor. Moreover, for each finite family
F of connected graphs containing at least one planar graph, we provide a linear kernel for
Planar-F-Deletion on graphs excluding a fixed graph H as a (topological) minor1.

We chose these families of problems as they are all tuned by a secondary parameter that
is either the constant r or the size of the graphs in the family F . That way, we not only
capture a wealth of parameterized problems, but we also make explicit the contribution of
the secondary parameter in the size of the derived kernels.

Organization of the paper. Due to space limitations, the proofs of the results marked with
‘[?]’ can be found in the full version of this paper, which is permanently available at [10]. For
the reader not familiar with the background used in previous work on this topic [3, 9, 14],
some preliminaries can be found in [10], including graph minors, parameterized problems,
(rooted) tree-decompositions, boundaried graphs, the canonical equivalence relation ≡Π,t for a
problem Π and an integer t, FII, protrusions, and protrusion decompositions. In Section 2 we
introduce the basic definitions of our framework and present an explicit protrusion replacer.
In Section 3 we show how to apply our methodology to various problems, and we conclude
with some directions for further research in Section 4.

2 An explicit protrusion replacer

In this section we present our strategy to construct an explicit protrusion replacer via dynamic
programming. For a positive integer t, we define Ft as the class of all t-boundaried graphs of
treewidth at most t− 1 that have a rooted tree-decomposition with all boundary vertices
contained in the root-bag. We will restrict ourselves to parameterized graph problems such
that a solution can be certified by a subset of vertices.

I Definition 1 (Vertex-certifiable problem). A parameterized graph problem Π is called
vertex-certifiable if there exists a language LΠ (called certifying language for Π) defined on
pairs (G,S), where G is a graph and S ⊆ V (G), such that (G, k) is a Yes-instance of Π
if and only if there exists a subset S ⊆ V (G) with |S| 6 k (or |S| > k, depending on the
problem) such that (G,S) ∈ LΠ.

Many graph problems are vertex-certifiable, like r-Dominating Set, Feedback Vertex
Set, or Treewidth-t Vertex Deletion. This section is structured as follows. In
Subsection 2.1 we define the notion of encoder, the main object that will allow us to
formalize in an abstract way the tables of dynamic programming. In Subsection 2.2 we use
encoders to define an equivalence relation on graphs in Ft that, under some natural technical
conditions, will be a refinement of the canonical equivalence relation defined by a problem
Π (see [10]). This refined equivalence relation allows us to provide an explicit upper bound
on the size of its representatives (Lemma 11), as well as a linear-time algorithm to find
them (Lemma 12). In Subsection 2.3 we use the previous ingredients to present an explicit

1 In an earlier version of this paper, we also described a linear kernel for Planar-F-Packing on graphs
excluding a fixed graph H as a minor. Nevertheless, as this problem is not directly vertex-certifiable
(see Definition 1), for presenting it we should restate and extend many of the definitions and results
given in Section 2 in order to deal with more general families of problems. Therefore, we decided not to
include this family of problems in this article.



V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 315

protrusion replacement rule (Theorem 13), which replaces a large enough protrusion with
a bounded-size representative from its equivalence class, in such a way that the parameter
does not increase.

2.1 Encoders
The Dominating Set problem, as a vertex-certifiable problem, will be used hereafter as
a running example to illustrate our general framework and definitions. Let us start with a
description of dynamic programming tables for Dominating Set on graphs of bounded
treewidth.

Running example: Let B be a bag of a rooted tree-decomposition (T,X ) of width t − 1
of a graph G ∈ Ft. The dynamic programming (DP) tables for Dominating Set can
be defined as follows. The entries of the DP-table for B are indexed by the set of tuples
R ∈ {0, ↑ 1, ↓ 1}|B|, so-called encodings. As detailed below, the symbol 0 stands for vertices
in the (partial) dominating set, the symbol ↓ 1 for vertices that are already dominated, and
↑ 1 for vertices with no constraints. More precisely, the coordinates of each |B|-tuple are in
one-to-one correspondence with the vertices of B. For a vertex v ∈ B, we denote by R(v) its
corresponding coordinate in the encoding R. A subset S ⊆ V (GB) is a partial dominating
set satisfying R if the following conditions are satisfied:
∀v ∈ V (GB) \B, dGB

(v, S) 6 1; and
∀v ∈ B: R(v) = 0 ⇒ v ∈ S, and R(v) =↓ 1 ⇒ dGB

(v, S) 6 1.
Observe that if S is a partial dominating set satisfying R, then {v ∈ B | R(v) = 0} ⊆ S,
but S may also contain vertices with R(v) 6= 0. Likewise, the vertices that are not (yet)
dominated by S are contained in the set {v ∈ B | R(v) =↑ 1}. J

The following definition considers the tables of dynamic programming in an abstract way.

I Definition 2 (Encoder). An encoder E is a pair (C, LC) where
(i) C is a function that, for each (possibly empty) finite subset I ⊆ N+, outputs a (possibly

empty) finite set C(I) of strings over some alphabet. Each R ∈ C(I) is called a C-encoding
of I; and

(ii) LC is a computable language whose strings encode triples (G,S,R), where G is a
boundaried graph, S ⊆ V (G), and R ∈ C(Λ(G)). If (G,S,R) ∈ LC, we say that S
satisfies the C-encoding R.

As it will become clear with the running example, the set I represents the labels from a bag,
C(I) represents the possible configurations of the vertices in the bag, and LC contains triples
that correspond to solutions to these configurations.
Running example: Each rooted graph GB can be naturally viewed as a |B|-boundaried graph
such that B = ∂(GB) with I = Λ(GB). Let EDS = (CDS, LCDS) be the encoder described
above for Dominating Set. The tables of the dynamic programming algorithm to solve
Dominating Set are obtained by assigning to every CDS-encoding (that is, DP-table entry)
R ∈ CDS(I), the size of a minimum partial dominating set satisfying R, or +∞ if such a set
of vertices does not exist. This defines a function fEDS

G : CDS(I)→ N ∪ {+∞}. Observe that
if B = ∂(GB) = ∅, then the value assigned to the encodings in CDS(∅) is indeed the size of a
minimum dominating set of GB . �

For a general minimization problem Π, we will only be interested in encoders that permit
to solve Π via dynamic programming. More formally, we define a Π-encoder and the values
assigned to the encodings as follows. (Maximization problems are treated similarly, see [10]

STACS’14



316 Explicit Linear Kernels via Dynamic Programming

for the corresponding definitions of the functions fEG and fE,g
G defined below. The other

definitions of this section remain unchanged.)
I Definition 3 (Π-encoder and its associated function). Let Π be a vertex-certifiable minimiz-
ation problem.
(i) An encoder E = (C, LC) is a Π-encoder if C(∅) consists of a single C-encoding, namely

R∅, such that for every 0-boundaried graph G and every S ⊆ V (G), (G,S,R∅) ∈ LC if
and only if (G,S) ∈ LΠ.

(ii) Let G be a t-boundaried graph with Λ(G) = I. We define the function fEG : C(I) →
N ∪ {+∞} as

fEG(R) = min{k : ∃S ⊆ V (G), |S| 6 k, (G,S,R) ∈ LC}. (1)

In Equation (1), if such a set S does not exist, we set fEG(R) := +∞. We define
C∗G(I) := {R ∈ C(I) | fEG(R) 6= +∞}.
Condition (i) in Definition 3 guarantees that, when the considered graph G has no

boundary, the language of the encoder is able to certify a solution of problem Π. In other
words, we ask that the set {(G,S) | (G,S,R∅) ∈ LC)} is a certifying language for Π. Observe
that for a 0-boundaried graph G, the function fEG(R∅) outputs the minimum size of a set S
such that (G,S) ∈ LΠ.

The following definition provides a way to control the number of possible distinct values
assigned to encodings. This property will play a similar role to FII or monotonicity in
previous work [3, 9, 14].
I Definition 4 (Confined encoding). An encoder E is g-confined if there exists a function
g : N → N such that for any t-boundaried graph G with Λ(G) = I it holds that either
C∗G(I) = ∅ or

max
R∈C∗

G
(I)
fEG(R) − min

R∈C∗
G

(I)
fEG(R) 6 g(t). (2)

See the figure in [10] for a schematic illustration of a confined encoder. In this figure,
each column of the table corresponds to a C-encoder R, which is filled with the value fEG(R).
Running example: It is easy to observe that the encoder EDS described above is g-confined for
g(t) = t. Indeed, let G be a t-boundaried graph (corresponding to the graph GB considered
before) with Λ(G) = I. Consider an arbitrary encoding R ∈ C(I) and the encoding R0 ∈ C(I)
satisfying R0(v) = 0 for every v ∈ ∂(G). Let S0 ⊆ V (G) be a minimum-sized partial
dominating set satisfying R0, i.e., such that (G,S0, R0) ∈ LCDS . Observe that S0 also satisfies
R, i.e., (G,S0, R) ∈ LCDS . It then follows that fEDS

G (R0) = maxR f
EDS
G (R). Moreover, let

S ⊆ V (G) be a minimum-sized partial dominating set satisfying R, i.e., such that (G,S,R) ∈
LCDS

. Then note that R0 is satisfied by the set S ∪ ∂(G), so we have that for every encoding
R, fEDS

G (R) + |∂(G)| > fEDS
G (R0). It follows that fEDS

G (R0) − minR f
EDS
G (R) 6 |∂(G)| 6 t,

proving that the encoder is indeed g-confined. �
For some problems and encoders, we may need to “force” the confinement of an encoder

E that may not be confined according to Definition 4, while still preserving its usefulness for
dynamic programming, in the sense that no relevant information is removed from the tables
(for example, see the encoder for r-Scattered Set in [10]). To this end, given a function
g : N→ N, we define the function fE,g

G : C(I)→ N ∪ {+∞} as

fE,g
G (R) =

{
+∞, if fEG(R)− g(t) > minR∈C(I) f

E
G(R)

fEG(R), otherwise. . (3)

Intuitively, one shall think as the function fE,g
G as a “compressed” version of the function

fEG, which stores only the values that are useful for performing dynamic programming.



V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 317

2.2 Equivalence relations and representatives
An encoder E together with a function g : N→ N define an equivalence relation ∼E,g,t on
graphs in Ft as follows.

I Definition 5 (Equivalence relation ∼E,g,t). Let E be an encoder, let g : N → N, and let
G1, G2 ∈ Ft. We say that G1 ∼E,g,t G2 if and only if Λ(G1) = Λ(G2) =: I and there exists
an integer c, depending only on G1 and G2, such that for every C-encoding R ∈ C(I) it holds
that

fE,g
G1

(R) = fE,g
G2

(R) + c . (4)

Note that if there exists R ∈ C(I) such that fE,g
G1

(R) 6=∞, then the integer c satisfying
Equation (4) is unique, otherwise every integer c satisfies Equation (4). We define the
following function ∆E,g,t : Ft × Ft → Z, which is called, following the terminology from
Bodlaender et al. [3], the transposition function for the equivalence relation ∼E,g,t.

∆E,g,t(G1, G2) =


c, if G1 ∼E,g,t G2 and Eq. (4) holds for a unique integer c;
0, if G1 ∼E,g,t G2 and Eq. (4) holds for every integer; and

undefined otherwise.
(5)

If we are dealing with a problem defined on a graph class G, the protrusion replacement
rule has to preserve the class G, as otherwise we would obtain a bikernel instead of a kernel.
That is, we need to make sure that, when replacing a graph in Ft ∩ G with one of its
representatives, we do not produce a graph that does not belong to G anymore. To this end,
we define an equivalence relation ∼E,g,t,G on graphs in Ft ∩ G, which refines the equivalence
relation ∼E,g,t of Definition 5.

I Definition 6 (Equivalence relation ∼E,g,t,G). Let G be a class of graphs and let G1, G2 ∈
Ft ∩ G.
(i) G1 ∼G,t G2 if and only if for any t-boundaried graph H, G1 ⊕ H ∈ G if and only if

G2 ⊕H ∈ G.
(ii) ] G1 ∼E,g,t,G G2 if and only if G1 ∼E,g,t G2 and G1 ∼G,t G2.

It is well-known by Büchi’s theorem that regular languages are precisely those definable
in Monadic Second Order logic (MSO logic). By Myhill-Nerode’s theorem, it follows that
if the membership in a graph class G can be expressed in MSO logic, then the equivalence
relation ∼G,t has a finite number of equivalence classes (see for instance [6, 7]). However,
we do not have in general an explicit upper bound on the number of equivalence classes of
∼G,t, henceforth denoted by rG,t. Fortunately, in the context of our applications in Section 3,
where G will be a class of graphs that exclude some fixed graph as a (topological) minor2,
this will always be possible, and in this case it holds that rG,t 6 2t log t · ht · 2h2 .

For an encoder E = (C, LC), we let sE(t) := maxI⊆{1,...,t} |C(I)|, where |C(I)| denotes the
number of C-encodings in C(I). The following lemma gives an upper bound on the number
of equivalence classes of ∼E,g,t,G , which depends also on rG,t.

2 A particular case of the classes of graphs whose membership can be expressed in MSO logic. We would
like to stress here that we rely on the expressibility of the graph class G in MSO logic, whereas in
previous work [3,9, 14] what is used in the expressibility in CMSO logic of the problems defined on a
graph class.

STACS’14



318 Explicit Linear Kernels via Dynamic Programming

I Lemma 7. Let G be a graph class whose membership can be expressed in MSO logic. For
any encoder E, any function g : N→ N, and any positive integer t, the equivalence relation
∼E,g,t,G has finite index. More precisely, the number of equivalence classes of ∼E,g,t,G is at
most r(E , g, t,G) := (g(t) + 2)sE(t) · 2t · rG,t.

Proof. Let us first show that the equivalence relation ∼E,g,t has finite index. Indeed, let
I ⊆ {1, . . . , t}. By definition, we have that for any graph G ∈ Ft with Λ(G) = I, the function
fE,g

G can take at most g(t) + 2 distinct values (g(t) + 1 finite values and possibly the value
+∞). Therefore, it follows that the number of equivalence classes of ∼E,g,t containing all
graphs G in Ft with Λ(G) = I is at most (g(t) + 2)|C(I)|. As the number of subsets of
{1, . . . , t} is 2t, we deduce that the overall number of equivalence classes of ∼E,g,t is at most
(g(t) + 2)sE(t) · 2t. Finally, since the equivalence relation ∼E,t,G is the Cartesian product
of the equivalence relations ∼E,g,t and ∼G,t, the result follows from the fact that G can be
expressed in MSO logic. J

In order for an encoding E and a function g to be useful for performing dynamic
programming on graphs in Ft that belong to a graph class G, we introduce the following
definition, which captures the natural fact that the tables of a dynamic programming
algorithm should depend exclusively on the tables of the descendants in a rooted tree-
decomposition. Before moving to the definition, we note that given a graph G ∈ Ft and a
rooted tree-decomposition (T,X ) of G such that ∂(G) is contained in the root-bag of (T,X ),
the labels of ∂(G) can be propagated in a natural way to all bags of (T,X ) by introducing,
removing, and shifting labels appropriately. Therefore, for any node x of T , the graph Gx

can be naturally seen as a graph in Ft. (A brief discussion can be found in [10], and we refer
to [3] for more details.)

I Definition 8 (DP-friendly equivalence relation). An equivalence relation ∼E,g,t,G is DP-
friendly if for any graph G ∈ Ft and any rooted tree-decomposition (T,X ) of G such that
∂(G) is contained in the root-bag of (T,X ), and for any descendant x of the root r of T , if
G′ is the graph obtained from G by replacing the graph Gx ∈ Ft with a graph G′x ∈ Ft such
that Gx ∼E,g,t,G G

′
x, then G′ satisfies the following conditions:

(i) G ∼E,g,t,G G
′; and

(ii) ∆E,g,t(G,G′) = ∆E,g,t(Gx, G
′
x).

In Definition 8, as well as in the remainder of the article, when we replace the graph Gx

with the graph G′x, we do not remove from G any of the edges with both endvertices in the
boundary of Gx. That is, G′ = (G− (V (Gx)− ∂(V (Gx))))⊕G′x.

Recall that for the protrusion replacement to be valid for a problem Π, the equivalence
relation ∼E,g,t,G needs to be a refinement of the canonical equivalence relation ≡Π,t (note
that this implies, in particular, that if ∼E,g,t,G has finite index, then Π has FII). The next
lemma states a sufficient condition for this property, and furthermore it gives the value of the
transposition constant ∆Π,t(G1, G2), which will be needed in order to update the parameter
after the replacement.

I Lemma 9. [?] Let Π be a vertex-certifiable problem. If E is a Π-encoder and ∼E,g,t,G is a DP-
friendly equivalence relation, then for any two graphs G1, G2 ∈ Ft such that G1 ∼E,g,t,G G2,
it holds that G1 ≡Π,t G2 and ∆Π,t(G1, G2) = ∆E,g,t(G1, G2).

The following definition will be important to guarantee that, when applying our protrusion
replacement rule, the parameter of the problem under consideration does not increase.



V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 319

I Definition 10 (Progressive representatives of ∼E,g,t,G). Let C be some equivalence class of
∼E,g,t,G and let G ∈ C. We say that G is a progressive representative of C if for any graph
G′ ∈ C it holds that ∆E,g,t(G,G′) 6 0.

In the next lemma we provide an upper bound on the size of a smallest progressive
representative of any equivalence class of ∼E,g,t,G .

I Lemma 11. [?] Let G be a graph class whose membership can be expressed in MSO logic.
For any encoder E, any function g : N → N, and any t ∈ N such that ∼E,g,t,G is DP-
friendly, every equivalence class of ∼E,g,t,G has a progressive representative of size at most
b(E , g, t,G) := 2r(E,g,t,G)+1 · t, where r(E , g, t,G) is the function defined in Lemma 7.

The next lemma states that if one is given an upper bound on the size of the progressive
representatives of an equivalence relation defined on t-protrusions (that is, on graphs in
Ft)3, then a small progressive representative of a t-protrusion can be explicitly calculated
in linear time. In other words, it provides a generic and constructive way to perform a
dynamic programming procedure to replace protrusions, without needing to deal with the
particularities of each encoder in order to compute the tables. Its proof uses some ideas
taken from [3,9].

I Lemma 12. [?] Let G be a graph class, let E be an encoder, let g : N→ N, and let t ∈ N
such that ∼E,g,t,G is DP-friendly. Assume that we are given an upper bound b on the size
of a smallest progressive representative of any equivalence class of ∼E,g,t,G. Then, given
an n-vertex t-protrusion G, we can output in time O(n) a t-protrusion H of size at most
b such that G ∼E,g,t,G H and the corresponding transposition constant ∆E,g,t(H,G) with
∆E,g,t(H,G) 6 0, where the constant in the “O” notation depends only on E , g, b,G, and t.

2.3 Explicit protrusion replacer
We are now ready to piece everything together and state our main technical result, which
can be interpreted as a generic constructive way of performing protrusion replacement with
explicit size bounds. For our algorithms to be fully constructive, we restrict G to be the class
of graphs that exclude some fixed graph H as a (topological) minor.

I Theorem 13. Let H be a fixed graph and let G be the class of graphs that exclude H as a
(topological) minor. Let Π be a vertex-certifiable parameterized graph problem defined on G,
and suppose that we are given a Π-encoder E, a function g : N→ N, and an integer t ∈ N
such that ∼E,g,t,G is DP-friendly. Then, given an input graph (G, k) and a t-protrusion Y in
G, we can compute in time O(|Y |) an equivalent instance ((G− (Y − ∂(Y )))⊕ Y ′, k′), where
k′ 6 k and Y ′ is a t-protrusion with |Y ′| 6 b(E , g, t,G), where b(E , g, t,G) is the function
defined in Lemma 11.

Proof. By Lemma 7, the number of equivalence classes of the equivalence relation ∼E,g,t,G is
finite, and by Lemma 11 the size of a smallest progressive representative of any equivalence
class of ∼E,g,t,G is at most b(E , g, t,G). Therefore, we can apply Lemma 12 and deduce that, in
time O(|Y |), we can find a t-protrusion Y ′ of size at most b(E , g, t,G) such that Y ∼E,g,t,G Y

′,
and the corresponding transposition constant ∆E,g,t(Y ′, Y ) with ∆E,g,t(Y ′, Y ) 6 0. Since E
is a Π-encoder and ∼E,g,t,G is DP-friendly, it follows from Lemma 9 that Y ≡Π,t Y

′ and that

3 Note that we slightly abuse notation when identifying t-protrusions and graphs in Ft, as protrusions
are defined as subsets of vertices of a graph. Nevertheless, this will not cause any confusion.

STACS’14



320 Explicit Linear Kernels via Dynamic Programming

∆Π,t(Y ′, Y ) = ∆E,g,t(Y ′, Y ) 6 0. Therefore, if we set k′ := k + ∆Π,t(Y ′, Y ), it follows that
(G, k) and ((G− (Y − ∂(Y ))) oplusY ′, k′) are indeed equivalent instances of Π with k′ 6 k

and |Y ′| 6 b(E , g, t,G). J

The general recipe to use our framework on a parameterized problem Π defined on a
class of graphs G is as follows: one has just to define the tables to solve Π via dynamic
programming on graphs of bounded treewidth (that is, the encoder E and the function g),
check that E is a Π-encoder and that ∼E,g,t,G is DP-friendly, and then Theorem 13 provides a
linear-time algorithm that replaces large protrusions with graphs whose size is bounded by an
explicit constant, and that updates the parameter of Π accordingly. This protrusion replacer
can then be used, for instance, whenever one is able to find a linear protrusion decomposition
of the input graphs of Π on some sparse graph class G. In particular, Theorem 13 yields the
following corollary.

I Corollary 14. Let H be a fixed graph, and let G be the class of graphs that exclude H
as a (topological) minor. Let Π be a vertex-certifiable parameterized graph problem on G,
and suppose that we are given a Π-encoder E, a function g : N→ N, and an integer t ∈ N
such that ∼E,g,t,G is DP-friendly. Then, given an instance (G, k) of Π together with an
(α · k, t)-protrusion decomposition of G, we can construct a linear kernel for Π of size at most
(1 + b(E , g, t,G)) · α · k, where b(E , g, t,G) is the function defined in Lemma 11.

Proof. For 1 6 i 6 `, we apply the polynomial-time algorithm given by Theorem 13 to
replace each t-protrusion Yi with a graph Y ′i of size at most b(E , g, t,G), and to update
the parameter accordingly. In this way we obtain an equivalent instance (G′, k′) such that
G′ ∈ G, k′ 6 k, and |V (G′)| 6 |Y0|+ ` · b(E , g, t,G) 6 (1 + b(E , g, t,G))α · k . J

Notice that once we fix the problem Π and the class of graphs G where Corollary 14 is
applied, a kernel of size c · k can be derived with a concrete upper bound for the value of c.
Notice that such a bound depends on the problem Π and the excluded (topological) minor H.
In general, the bound can be quite big as it depends on the bound of Lemma 11, and this,
in turn, depends on the bound of Lemma 7. However, as we see in the next section, more
moderate estimations can be extracted for particular families of parameterized problems.

3 Application to concrete problems

In this section we demonstrate the applicability of our framework by providing linear kernels
for several problems on graphs excluding a fixed graph as a (topological) minor. Due to
space limitations, we focus here on r-Dominating Set and Planar-F-Deletion. The
linear kernel for r-Scattered Set can be found in [10].

The following result will be fundamental in order to find linear protrusion decompositions
when a treewidth-modulator X of the input graph G is given, with |X| = O(k). It is a
consequence of [14, Lemma 3, Proposition 1, and Theorem 1].

I Theorem 15 (Kim et al. [14]). Let c, t be two positive integers, let H be an h-vertex
graph, let G be an n-vertex H-topological-minor-free graph, and let k be a positive integer
(typically corresponding to the parameter of a parameterized problem). If we are given a set
X ⊆ V (G) with |X| 6 c · k such that tw(G−X) 6 t, then we can compute in time O(n) an
((αH · t · c) · k, 2t+ h)-protrusion decomposition of G, where αH is a constant depending only
on H, which is upper-bounded by 40h225h log h.



V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 321

As mentioned in Subsection 2.2, if G is a graph class whose membership can be expressed
in MSO logic, then ∼G,t has a finite number of equivalence classes, namely rG,t. In our
applications, we will be only concerned with families of graphs G that exclude some fixed
h-vertex graph H as a (topological) minor. In this case, using standard dynamic programming
techniques, it can be shown that rG,t 6 2t log t · ht · 2h2 . The details can be found in [10].

An explicit linear kernel for r-Dominating Set. Let r > 1 be a fixed integer. We define
the r-Dominating Set problem as follows.

r-Dominating Set
Instance: A graph G = (V, E) and a non-negative integer k.

Parameter: The integer k.
Question: Does G have a set S ⊆ V with |S| 6 k and such that every vertex

in V \ S is within distance at most r from some vertex in S?

For r = 1, the r-Dominating Set problem corresponds to Dominating Set. Our encoder
for r-Dominating Set is strongly inspired by the work of Demaine et al. [5], and it generalizes
to one given for Dominating Set in the running example of Section 2. It can be found
in [10], and we call it ErDS = (CrDS, LCrDS).

I Lemma 16. [?] The encoder ErDS is a rDS-encoder. Furthermore, if G is an arbitrary
class of graphs and g(t) = t, then the equivalence relation ∼ErDS,g,t,G is DP-friendly.

We now proceed to construct a linear kernel for r-Dominating Set when the input
graph excludes a fixed apex graph H as a minor. Toward this end, the following theorem will
play an important role. It follows mainly from the results of Fomin et al. [9], but also uses the
explicit combinatorial bound of Kawarabayashi and Kobayashi [12] on the relation between
the treewidth and the largest grid minor on H-minor-free graphs, and the algorithmic results
of Kawarabayashi and Reed [13] in order to obtain the claimed set X.

I Theorem 17 (Fomin et al. [9]). Let r > 1 be an integer, let H be an h-vertex apex graph,
and let rDSH be the restriction of the r-Dominating Set problem to input graphs which
exclude H as a minor. If (G, k) ∈ rDSH , then there exists a set X ⊆ V (G) such that
|X| = r · 2O(h log h) · k and tw(G−X) = r · 2O(h log h). Moreover, given an instance (G, k) of
rDSH with |V (G)| = n, there is an algorithm running in time O(n3) that either finds such a
set X or correctly reports that (G, k) is a No-instance.

We are now ready to present the linear kernel for r-Dominating Set.

I Theorem 18. Let r > 1 be an integer, let H be an h-vertex apex graph, and let rDSH

be the restriction of the r-Dominating Set problem to input graphs which exclude H as a
minor. Then rDSH admits a constructive linear kernel of size at most f(r, h) · k, where f is
an explicit function depending only on r and h, defined in Equation (6) below.

Proof. Given an instance (G, k) of rDSH , we run the cubic algorithm given by Theorem 17
to either conclude that (G, k) is a No-instance or to find a set X ⊆ V (G) such that
|X| = r · 2O(h log h) · k and tw(G − X) = r · 2O(h log h). In the latter case, we use the
set X as input to the algorithm given by Theorem 15, which outputs in linear time a
(r2 · 2O(h log h) · k, r · 2O(h log h))-protrusion decomposition of G. We now consider the encoder
ErDS = (CrDS, LCrDS) defined in [10]. By Lemma 16, ErDS is an rDS-encoder and ∼ErDS,g,t,G
is DP-friendly, where G is the class of H-minor-free graphs and g(t) = t. It can be proved

STACS’14



322 Explicit Linear Kernels via Dynamic Programming

that sErDS(t) 6 (2r + 1)t (see [10]). Therefore, we are in position to apply Corollary 14 and
obtain a linear kernel for rDSH of size at most

r2 · 2O(h log h) · b
(
ErDS, g, r · 2O(h log h),G

)
· k , (6)

where b
(
ErDS, g, r · 2O(h log h),G

)
is the function defined in Lemma 11. J

It can be easily checked that the multiplicative constant involved in the upper bound

of Equation (6) is 222r·log r·2O(h·log h)

, that is, it depends triple-exponentially on the integer r.

An explicit linear kernel for Planar-F-Deletion. Let F be a finite set of graphs. We define
the F-Deletion problem as follows.
F-Deletion

Instance: A graph G and a non-negative integer k.
Parameter: The integer k.

Question: Does G have a set S ⊆ V (G) such that |S| 6 k

and G− S is H-minor-free for every H ∈ F?

When all the graphs in F are connected, the corresponding problem is called Connected-
F-Deletion, and when F contains at least one planar graph, we call it Planar-F-Deletion.
When both conditions are satisfied, the problem is called Connected-Planar-F-Deletion.
Note that Connected-Planar-F-Deletion encompasses, in particular, Vertex Cover
and Feedback Vertex Set. We obtain a linear kernel for the problem using two different
approaches. The first one follows the same scheme as the one used so far, that is, we first
find a treewidth-modulator X in polynomial time, and then we use this set X as input to
the algorithm of Theorem 15 to find a linear protrusion decomposition of the input graph.
In order to find the treewidth-modulator X, we need that the input graph G excludes a
fixed graph H as a minor. With our second approach, that can be found in [10], we obtain
a linear kernel on the larger class of graphs that exclude a fixed graph H as a topological
minor. We provide two variants of this second approach. One possibility is to use the
randomized constant-factor approximation for Planar-F-Deletion by Fomin et al. [8] as
treewidth-modulator, which yields a randomized linear kernel that can be found in uniform
polynomial time. The second possibility consists in arguing just about the existence of a
linear protrusion decomposition in Yes-instances, and then greedily finding large protrusions
to be reduced by the protrusion replacer of Theorem 13. This yields a deterministic linear
kernel that can be found in time nf(H,F), where f is a function depending on H and F .

Our encoder for the F-Deletion problem (see [10]) uses the dynamic programming
machinery developed by Adler et al. [1]. We prove that this encoder is indeed an F-Deletion-
encoder and that the corresponding equivalence relation is DP-friendly, under the constraint
that all the graphs in F are connected. Interestingly, this phenomenon concerning the
connectivity seems to be in strong connection with the fact that the F-Deletion problem
has FII if all the graphs in F are connected [3, 8], but for some families F containing
disconnected graphs, F-Deletion has not FII (see [14] for an example of such family).

I Theorem 19. [?] Let F be a finite set of connected graphs containing at least one r-vertex
planar graph F , let H be an h-vertex graph, and let CPFDH be the restriction of the
Connected-Planar-F-Deletion problem to input graphs which exclude H as a minor.
Then CPFDH admits a constructive linear kernel of size at most f(r, h) · k, where f is an
explicit function depending only on r and h, which can be found in [10].



V. Garnero, C. Paul, I. Sau, and D.M. Thilikos 323

4 Further research

The methodology for performing explicit protrusion replacement via dynamic programming
that we have presented is quite general, and it could also be used to obtain polynomial
kernels (not necessarily linear). We have restricted ourselves to vertex-certifiable problems,
but is seems plausible that our approach could be also extended to edge-certifiable problems
or to problems on directed graphs.

The linear kernel for Planar-F-Deletion requires that all graphs in the family F
are connected. It would be interesting to get rid of this assumption. All the applications
examined in this paper concerned parameterized problems tuned by a secondary parameter,
i.e., r for the case of r-Dominating Set and r-Scattered Set and the size of the graphs
in F for the case of F -Deletion. In all kernels derived for these problems, the dependency
on this secondary parameter is triple-exponential, while the dependency on the choice
of the excluded graph H is one exponent higher. Improving these dependencies on the
“meta-parameters” is worth being investigated, as well as examining to what extent this
exponential dependency is unavoidable under some assumptions based on automata theory
or (parameterized) complexity theory.

References
1 Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos.

Faster parameterized algorithms for minor containment. Theoretical Comput. Science,
412(50):7018–7028, 2011.

2 J. Alber, M.R. Fellows, and R. Niedermeier. Polynomial-Time Data Reduction for Domin-
ating Set. Journal of the ACM, 51(3):363–384, 2004.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. In Proc. of the 50th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 629–638. IEEE Computer Society, 2009.

4 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Information and Computation, 85(1):12–75, 1990.

5 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs.
ACM Transactions on Algorithms, 1(1):33–47, 2005.

6 R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
7 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer Verlag, 2006.
8 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-

Deletion: Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the
53rd IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–479, 2012.

9 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Bidimen-
sionality and kernels. In Proc. of the 21st ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 503–510. SIAM, 2010.

10 Valentin Garnero, Christophe Paul, Ignasi Sau, and Dimitrios M. Thilikos. Explicit linear
lernels via dynamic programming. CoRR, abs/1312.6585, 2013.

11 Jiong Guo and Rolf Niedermeier. Linear problem kernels for NP-hard problems on planar
graphs. In Proc. of the 34th International Colloquium on Automata, Languages and Pro-
gramming (ICALP), volume 4596 of LNCS, pages 375–386, 2007.

12 Ken ichi Kawarabayashi and Yusuke Kobayashi. Linear min-max relation between the
treewidth of H-minor-free graphs and its largest grid. In Proc. of the 29th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 14 of LIPIcs,
pages 278–289, 2012.

STACS’14



324 Explicit Linear Kernels via Dynamic Programming

13 Ken ichi Kawarabayashi and Bruce Reed. A Separator Theorem in Minor-Closed Classes.
In Proc. of the 51st IEEE Symposium on Foundations of Computer Science (FOCS), pages
153–162. IEEE Computer Society, 2010.

14 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. In Proc. of the 40th International Colloquium on Automata, Languages
and Programming (ICALP), volume 7965 of LNCS, pages 613–624, 2013.


	Introduction
	An explicit protrusion replacer
	Encoders
	Equivalence relations and representatives
	Explicit protrusion replacer

	Application to concrete problems
	Further research

