
Shared-Constraint Range Reporting
Sudip Biswas1, Manish Patil1, Rahul Shah1, and
Sharma V. Thankachan2

1 Louisiana State University, USA
{sbiswa7,mpatil,rahul}@csc.lsu.edu

2 Georgia Institute of Technology, USA
sharma.thankachan@gatech.edu

Abstract
Orthogonal range reporting is one of the classic and most fundamental data structure problems.
(2,1,1) query is a 3 dimensional query with two-sided constraint on the first dimension and one
sided constraint on each of the 2nd and 3rd dimension. Given a set of N points in three dimension,
a particular formulation of such a (2, 1, 1) query (known as four-sided range reporting in three-
dimension) asks to report all those K points within a query region [a, b]×(−∞, c]× [d,∞). These
queries have overall 4 constraints. In Word-RAM model, the best known structure capable of
answering such queries with optimal query time takes O(N logεN) space, where ε > 0 is any
positive constant. It has been shown that any external memory structure in optimal I/Os must
use Ω(N logN/ log logB N) space (in words), where B is the block size [Arge et al., PODS 1999].
In this paper, we study a special type of (2, 1, 1) queries, where the query parameters a and c

are the same i.e., a = c. Even though the query is still four-sided, the number of independent
constraints is only three. In other words, one constraint is shared. We call this as a Shared-
Constraint Range Reporting (SCRR) problem. We study this problem in both internal as well as
external memory models. In RAM model where coordinates can only be compared, we achieve
linear-space and O(logN +K) query time solution, matching the best-known three dimensional
dominance query bound. Whereas in external memory, we present a linear space structure with
O(logB N+log logN+K/B) query I/Os. We also present an I/O-optimal (i.e., O(logB N+K/B)
I/Os) data structure which occupies O(N log logN)-word space. We achieve these results by
employing a novel divide and conquer approach. SCRR finds application in database queries
containing sharing among the constraints. We also show that SCRR queries naturally arise in
many well known problems such as top-k color reporting, range skyline reporting and ranked
document retrieval.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases data structure, shared constraint, multi-slab, point partitioning

Digital Object Identifier 10.4230/LIPIcs.ICDT.2015.277

1 Introduction

Orthogonal range searching is one of the central data structure problems which arises in
various fields. Many database applications benefit from the structures which answer range
queries in two or more dimensions. Goal of orthogonal range searching is to design a data
structure to represent a given set of N points in d-dimensional space, such that given an
axis-aligned query rectangle, one can efficiently list all points contained in the rectangle. One
simple example of orthogonal range searching data structure represents a set of N points in
1-dimensional space, such that given a query interval, it can report all the points falling within
the interval. A balanced binary tree taking linear space can support such queries in optimal

© Sudip Biswas, Manish Patil, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martín Ugarte; pp. 277–290

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.277
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

278 Shared-Constraint Range Reporting

O(logN +K) time. Orthogonal range searching gets harder in higher dimensions and with
more constraints. The hardest range reporting, yet having a linear-space and optimal time
(or query I/Os in external memory) solution is the three dimensional dominance reporting
query, also known as (1, 1, 1) query [1] with one-sided constraint on each dimension. Here the
points are in three-dimensions and the query asks to report all those points within an input
region [q1,∞)× [q2,∞)× [q3,∞). A query of the form [q1, q2]× [q3,∞) is known as (2, 1)
query, which can be seen as a particular case of (1, 1, 1) query. However, four (and higher)
sided queries are known to be much harder and no linear-space solution exists even for the
simplest two dimensional case which matches the optimal query time of three dimensional
dominance reporting. In Word-RAM model, the best result (with optimal query time) is
O(N logεN) words [10], where N is the number of points and ε > 0 is an arbitrary small
positive constant. In external memory, there exists an Ω(N logN/ log logB N)-space lower
bound (and a matching upper bound) for any two-dimensional four-sided range reporting
structure with optimal query I/Os [6]. Therefore, we cannot hope for a linear-space or
almost-linear space structure with O(logB N +K/B) I/Os for orthogonal range reporting
queries with four or more constraints. The model of computation we assume is a unit-cost
RAM with word size logarithmic in n. In RAM model, random access of any memory cell
and basic arithmetic operations can be performed in constant time.

Motivated by database queries with constraint sharing and several well known problems
(More details in Section 2), we study a special four sided range reporting query problem,
which we call as the Shared-Constraint Range Reporting (SCRR) problem. Given a set P of
N three dimensional points, the query input is a triplet (a, b, c), and our task is to report all
those points within a region [a, b]× (−∞, a]× [c,∞). We can report points within any region
[a, b]× (−∞, f(a)]× [c,∞), where f(·) is a pre-defined monotonic function (using a simple
transformation). The query is four sided with only three independent constraints. Many
applications which model their formulation as 4-sided problems actually have this sharing
among the constraints and hence better bounds can be obtained for them using SCRR data
structures. Formally, we have the following definition.

I Definition 1. A SCRR query QP(a, b, c) on a set P of three dimensional points asks to
report all those points within the region [a, b]× (−∞, a]× [c,∞).

The following theorems summarize our main results.

I Theorem 2 (SCRR in Ram Model). There exists a linear space RAM model data structure
for answering SCRR queries on the set P in O(logN +K) time, where N = |P| and K is
the output size.

I Theorem 3 (Linear space SCRR in External Memory). SCRR queries on the set P can
be answered in O(logB N + log logN + K/B) I/Os using an O(N)-word structure, where
N = |P|, K is the output size and B is the block size.

I Theorem 4 (Optimal Time SCRR in External Memory). SCRR queries on the set P can be
answered in optimal O(logB N +K/B) I/Os using an O(N log logN)-word structure, where
N = |P|, K is the output size and B is the block size.

Our Approach. Most geometric range searching data structures use point partitioning
scheme with appropriate properties, and recursively using the data structure for each
partition. Our paper uses a novel approach of partitioning the points which seem to fit SCRR
problem very well. Our data structure uses rank-space reduction on the given point-set,
divide the SCRR query data structure based on small and large output size, takes advantage

S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 279

of some existent range reporting data structure to obtain efficient solution and then bootstrap
the data structure for smaller ranges.

Related Work. The importance of two-dimensional three-sided range reporting is mirrored
in the number of publications on the problem. The general two-dimensional orthogonal range
searching has been extensively studied in internal memory [2, 3, 4, 11, 12, 13, 9, 7]. The
best I/O model solution to the three-sided range reporting problem in two-dimensions is
due to Arge et al. [6], which occupies linear space and answers queries in O(logB N +K/B)
I/Os. Vengroff and Vitter [20] addressed the problem of dominance reporting in three
dimensions in external memory model and proposed O(N logN) space data structure that
can answer queries in optimal O(logB N + K/B) I/Os. Recently, Afshani [1] improved
the space requirement to linear space while achieving same optimal I/O bound. For the
general two-dimensional orthogonal range reporting queries in external memory settings
Arge et al. [6] gave O((N/B) log2 N/ log2 logB N) blocks of space solution achieving optimal
O(logB N +K/B) I/Os. Another external memory data structure is by Arge et al. [5] where
the query I/Os is O(

√
N/B+ k/B) and the index space is linear. In the case when all points

lie on a U × U grid, the data structure of Nekrich [19] answers range reporting queries in
O(log logB U +K/B) I/Os. In [19] the author also described data structures for three-sided
queries that use O(N/B) blocks of space and answer queries in O(log logB U +K/B) I/Os on
a U × U grid and O(log(h)

B N) I/Os on an N ×N grid for any constant h > 0. Very recently,
Larsen and Pagh [17] showed that three-sided point reporting queries can be answered in
O(1 +K/B) I/Os using O(N/B) blocks of space.

Outline. In section 2, we show how SCRR arises in database queries and relate SCRR
problem to well known problems of colored range reporting, ranked document retrieval, range
skyline queries and two-dimensional range reporting. In section 3 we discuss rank-space
reduction of the input point-set to make sure no two points share the same x-coordinate. In
section 4 we introduce a novel way to partition the point-set for answering SCRR queries
which works efficiently for larger output size. Section 5 explains how to answer SCRR queries
for smaller output size. Using these two data structures, section 6 obtains linear space and
O(logN +K) time data structure for SCRR queries in RAM model thus proving theorem 2.
Section 7 discusses SCRR queries in external memory, which includes a linear space but
sub-optimal I/O and an optimal I/O but sub-optimal space data structures.

2 Applications

In this section, we show application of SCRR in database queries and list some of the
well known problems, which could be directly reduced to SCRR. We start with two simple
examples to illustrate shared constraint queries in database:

1. National Climatic Data Center contains data for various geographic locations. Sustained
wind speed and gust wind speed are related to the mean wind speed for a particular time.
Suppose we want to retrieve the stations having (sustained_wind_speed, gust_wind_
speed) satisfying criteria 1: mean_wind_speed < sustained_wind_speed < max_wind
_speed and criteria 2: gust_wind_speed < mean_wind_speed. Here mean_wind_
speed and max_wind_speed comes as query parameters. Note that both these criteria
have one constraint shared, thus effectively reducing number of independent constraints
by one. By representing each station as the 2-dimensional point (sustained_wind_speed,
gust_wind_speed), this query translates into the orthogonal range query specified by the

ICDT 2015

280 Shared-Constraint Range Reporting

(unbounded) axis-aligned rectangle [mean_wind_speed : max_wind_speed] × (−∞ :
mean_wind_speed].

2. Consider the world data bank which contains data for Gross domestic product (gdp),
and we are interested in those countries that have gdp within the range of minimum and
maximum gdp among all countries and gdp growth is greater than certain proportion
of the minimum gdp. Our query might look like: min_gdp < gdp < max_gdp and
c × min_gdp < gdp_growth, where c is a constant. Here min_gdp and max_gdp
comes as query parameters. The constraint on gdp_growth is proportional to the lower
constraint of gdp, which means the number of independent constraint is only two. This
query can be similarly converted to orthogonal range reporting problem by representing
each country as the point (gdp, gdp_growth), and asking to report all the points contained
in the (unbounded) axis-aligned rectangle [min_gdp : max_gdp] × [c×min_gdp : ∞).

We can take advantage of such sharing among constraints to construct more effective data
structure for query answering. This serves as a motivation for SCRR data structures. Below
we show the relation between SCRR and some well known problems.

Colored Range Reporting. In colored range reporting, we are given an array A, where each
element is assigned a color, and each color has a priority. For a query [a, b] and a threshold
c (or a parameter K) we have to report all distinct colors with priority ≥ c (or K colors
with highest priority) within A[a, b] [15]. We use the chaining idea by muthukrishnan [18] to
reduce the colored range reporting to SCRR problem.

We map each element A[i] to a weighted point (xi, yi) such that (1) xi = i, (2) yi is the
highest j < i such that both A[i] and A[j] have the same color (if such a yi does not exist
then yi = −∞) and (3) its weight wi is same as the priority of color associated with A[i].
Then, the colored range reporting problem is equivalent to the following SCRR problem:
report all points in [a, b] × (−∞, a) with weight ≥ c. By maintaining a additional linear
space structure, for any given a, b and K, a threshold c can be computed in constant time
such that number of colors reported is at least K and at most Ω(K) (we defer details to the
full version). Then, by finding the Kth color with highest color among this (using selection
algorithm) and filtering out colors with lesser priority, we shall obtain the top-K colors in
additional O(K/B) I/Os or O(K) time.

Document Retrieval Problems. In string databases or in string retrieval systems, we have
a collection D of documents (strings) of total length N . Define score(P, d), the score of
a document d with respect to a pattern P , which is a function of the locations of all P ’s
occurrences in d. Then our goal is to preprocess D and maintain a structure such that, given
a query pattern P and a threshold c, all those documents di with score(P, di) ≥ c can be
retrieved efficiently. Hon et. al. [14] showed that the document retrieval problem can be
reduced to the following problem: Given a collection of N intervals (yi, xi) with weights wi
and a query (a, b, c), output all the intervals such that yi ≤ a ≤ xi ≤ b and wi ≥ c. This is
precisely the SCRR problem that we have investigated in this article.

Range Skyline Queries. Given a set S of N points in two-dimensions, a point (xi, yi) is
said to be dominated by a point (xj , yj) if xi < xj and yi < yj . Skyline of S is subset of
S which consists of all the points in S which are not dominated by any other point in S.
In Range-Skyline problem, the emphasis is to quickly generate those points within a query
region R, which are not dominated by any other point in R. There exists optimal solutions

S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 281

Figure 1 Special Two-dimensional Range Reporting Query.

in internal as well as external memory models for the case where R is a three-sided region of
the form [a, b]× [c,+∞) [16, 8].

We can reduce the range skyline query to SCRR by mapping each two-dimensional input
point pi = (xi, yi) to a three-dimensional point x′i, y′i, z′i as follows: (1) x′i = xi, (2) y′i is the
the x-coordinate of the leftmost point dominating pi and (3) z′i = yi. Then range skyline
query with three-sided region [a, b] × [c,+∞) as input can be answered by reporting the
output of SCRR query [a, b]× (−∞, a]× [c,+∞).

Two-dimensional Range Reporting. Even though general four-sided queries are known to
be hard as noted earlier, we can efficiently answer “special" four-sided queries efficiently. Any
four-sided query with query rectangle R with one of its corners on the line x = y can be
viewed as a SCRR query. In fact any query rectangle R which intersect with x = y line (or a
predefined monotonic curve) can be reduced to SCRR (Figure 1).

3 Rank-Space Reduction of Points

We use rank-space reduction on the given point-set. Although rank-space reduction does not
save any space for our data structure, it helps to avoid predecessor/successor search while
querying and facilitate our partitioning technique. Without loss of generality, we assume that
the points pi = (xi, yi, zi) ∈ P satisfy the following conditions: xi ≤ xi+1 for all i ∈ [1, N − 1]
and also yi ≤ xi for all i ∈ [1, N]. Note that xi ≤ xi+1 can be ensured by sorting the point-set
with respect to their x-coordinates and any point not satisfying yi ≤ xi can not be answer of
our SCRR query, so we can remove them from consideration. In this section, we describe
how to transform each point pi = (xi, yi, zi) ∈ P to a point p′i = (x′i, y′i, z′i) ∈ P ′ with the
following additional properties guaranteed:

Points in P ′ are on an [1, N]× [1, N]× [1, N] grid (i.e., xi, yi, zi ∈ [1, N])
x′i < x′i+1 for all i ∈ [1, N − 1]. If yi ≤ yj (resp., zi ≤ zj), then y′i ≤ y′j (resp., z′i ≤ z′j)
for all i, j ∈ [1, N − 1].

Such a mapping is given below: (1) The x-coordinate of the transformed point is same as
the rank of that point itself. i.e., x′i = i (ties are broken arbitrarily), (2) Let yi ∈ (xk−1, xk],
then y′i = k, (3) Replace each zi by the size of the set. i.e., z′i = {j|zj ≤ zi, j ∈ [1, N]}. We
now prove the following lemma.

I Lemma 5. If there exists an S(N)-space structure for answering SCRR queries on P ′ in
optimal time in RAM model (or I/Os in external memory), then there exists an S(N)+O(N)-
space structure for answering SCRR queries on P in optimal time (or I/Os).

ICDT 2015

282 Shared-Constraint Range Reporting

OS0 OS2 OS3OS1

y

x
1 2 4 8

OS0 OS2 OS3OS1

y

x
1 2 4 8 OSi

E

D

CBA

Figure 2 Point partitioning schemes: (a) Oblique slabs (b) Step partitions.

Proof. Assume we have an S(N) space structure for SCRR queries on P ′. Now, whenever a
query QP(a, b, c) comes, our first task is to identify the parameters a′, b′ and c′ such that a
point pj is an output of QP(a, b, c) if and only if p′j is an output of QP(a′, b′, c′) and vice
versa. Therefore, if point p′j is an output for QP(a′, b′, c′), we can simply output pj as an
answer to our original query. Based on our rank-space reduction, a′, b′ and c′ are given as
follows: (1) xa′−1 < a ≤ xa′ (assume x′0 = 0), (2) xb′ ≤ b < xb′+1 (assume x′N+1 = N + 1),
(3) Let zj be the successor of c, then c′ = z′j .

By maintaining a list of all points in P in the sorted order of their x-coordinate values
(along with a B-tree or binary search over it), we can compute a′ and b′ in O(logN) time(or
O(logB N) I/Os). Similarly, c′ can also be computed using another list, where the points
in P are arranged in the sorted order of z-coordinate value. The space occupancy of this
additional structure is O(N). Notice that this extra O(logN) time or O(logB N) I/Os is
optimal if we do not assume any thing about the coordinate values of points in P. J

4 The Framework

In this section we introduce a new point partitioning scheme which will allow us to reduce
the SCRR query into a logarithmic number of disjoint planar 3-sided or three dimensional
dominance queries. From now onwards, we assume points in P to be in rank-space (Section 3).
We begin by proving the result summarized in following theorem.

I Lemma 6. By maintaining an O(|P|)-word structure, any SCRR query QP(·, ·, ·) can be
answered in O(log2 N +K) time in the RAM model, where K is the output size.

For simplicity, we treat each point pi ∈ P as a weighted point (xi, yi) in an [1, N]× [1, N]
grid with zi as its weight. The proposed framework utilizes divide-and-conquer technique
based on the following partitioning schemes:

Oblique Slabs: We partition the [1, N]×[1, N] grid into multi-slabs OS0, OS1, ..., OSdlogNe
induced by lines x = y + 2i for i = 0, 1, ...dlogNe as shown in figure 2(a). To be precise,
OS0 is the region between the lines x = y and x = y+1 and OSi for i = 1, 2, 3, ..., dlogNe
be the region between lines x = y + 2i−1 and x = y + 2i.
Step Partitions: Each slab OSi for i = 1, 2, ... is further divided into regions with right-
angled triangle shape (which we call as tiles) using axis parallel lines x = (2(i−1) ∗ (1 + j))
and y = 2(i−1) ∗ j for j = 1, 2, ... as depicted in Figure 2(b). OS0 is divided using axis
parallel lines x = j and y = j for j = 1, 2,Notice that the (axis parallel) boundaries of
these triangles within any particular oblique slab looks like a step function.

Our partitioning scheme ensures property summarized by following lemma.

I Lemma 7. Any region [a, b]× [1, a] intersects with at most O(logN) tiles.

S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 283

Proof. Let φi be the area of a tile in the oblique slabOSi. Note that φ0 = 1
2 and φi = 1

2 (2i−1)2

for i ∈ [1, dlogNe]. And let Ai be the area of the overlapping region between OSi and the
query region [a, b]× [1, a]. Now our task is to simply show Ai/φi is a constant for all values
of i. Assume b = n in the extreme case. Then the overlapping region between OSi and
[a, n]× [1, a] will be trapezoid in shape and its area is given by φi+1 − φi (See Figure 2(c)
for a pictorial proof). Therefore number of tiles needed for covering this trapezoidal region is
Ai/φi = O(1). Which means the entires region can be covered by O(logN) tiles (O(1) per
oblique slab). J

In the light of the above lemma, a given SCRR query QP(a, b, c) can be decomposed
into O(logN) subqueries of the type QPt

(a, b, c). Here Pt be the set of points within the
region covered by a tile t. In the next lemma, we show that each of the QPt

(a, b, c) can be
answered in optimal time (i.e., O(log |Pt|) plus O(1) time per output). Therefore, in total
O(N)-space, we can maintain such structures for every tile t with at least one point within
it. Then by combining with the result in lemma 7, the query QP(a, b, c) can be answered in
O(logN ∗ logN +K) = O(log2 N +K) time, and lemma 6 follows.

I Lemma 8. Let Pt be the set of points within the region covered by a tile t. Then a SCRR
query QPt

(a, b, c) can be answered in O(log |Pt|+ k) time using a linear-space (i.e., O(|Pt|)
words) structure, where k is the output size.

Proof. The first step is to maintain necessary structure for answering all possible axis aligned
three-dimensional dominance queries over the points in Pt, which takes linear-space (i.e.,
O(|Pt|) words or O(|Pt| log |Pt|) bits). Let α and β be the starting and ending position of
the interval obtained by projecting tile t to x-axis (see Figure 3). Then if the tile t intersects
with the query region [a, b]× [1, a], then we have the following cases (see Figure 3):
1. α ≤ a ≤ β ≤ b: In this case, all points in pi ∈ Pt implicitly satisfy the condition xi ≤ b.

Therefore QPt
(a, b, c) can be obtained by a three sided query with [a,N]× [1, a]× [c,N]

as the input region or a two dimensional dominance query with [a,N]× [1, N]× [c,N] as
the input region (Figure 3(a)).

2. a ≤ α ≤ β ≤ b: In this case, all points in pi ∈ Pt implicitly satisfy the condition xi ∈ [a, b].
Therefore, QPt(a, b, c) can be obtained by a two dimensional dominance query with
[1, N]× [1, a]× [c,N] as the input region (Figure 3(b)).

3. a ≤ α ≤ b ≤ β: In this case, all points in pi ∈ Pt implicitly satisfy the condition xi ≥ a.
Therefore QPt(a, b, c) can be obtained by a three dimensional dominance query with
[1, b]× [1, a]× [c,N] as the input region (Figure 3(c)).

4. α ≤ a ≤ b ≤ β: Notice that the line between the points (a, a) and (b, a) are completely
outside (and above) the tile t. Therefore, all points in pi ∈ Pt implicitly satisfy the
condition yi ≤ a. Therefore, QPt

(a, b, c) can be obtained by a three sided query with
[a, b]× [1, N]× [c,N] as the input region (Figure 3(d)).

Note that tiles can have two orientations. We have discussed four cases for one of the tile
orientations. Cases for other orientation is mirror of the above four cases and can be handled
easily. J

5 Towards O(log N + K) Time Solution

Our result in lemma 6 is optimal for K ≥ log2 N . In this section, we take a step forward to
achieve more efficient time solution for smaller values of K using multi-slab ideas. Using a
parameter ∆ (to be fixed later), we partition the [1, N]× [1, N] grid into L = dN/∆e vertical

ICDT 2015

284 Shared-Constraint Range Reporting

Q

a βα b

Q

a βα b

Q

βα ba

Q

a bα β

Figure 3 QP(a, b, c) and tile t intersections.

y

x
δ2 δ3 δL· · ·

y

3

41 2

δα δα+1 δβ· · · · · ·
a b

5
δα

δα+1

x

Figure 4 Divide-and-conquer scheme using ∆

slabs (Figure 4(a)). Multi-slabs V S0, V S1, ..., V SL are the slabs induced by lines x = i∆ for
i = 0, 1, ..., L. Denote by δi (i ∈ [0, L]) the minimum x-coordinate in V Si. For notational
convenience, we define δL+1 =∞. By slight abuse of notation, we use V Si to represent the
set of points in the corresponding slab.

A query QP with (a, b, c) as an input is called inter-slab query if it overlaps two or more
vertical slabs, otherwise if it is entirely contained within a single vertical slab we call it an
intra-slab query. In this section, we propose a data structure that can answer inter-slab
queries optimally.

I Lemma 9. Inter-slab SCRR queries can be answered in O(logN +K) time in RAM model
using a data structure occupying O(N) words space, where K represents the number of output.

Proof. Given a query QP(a, b, c) such that a ≤ b, let α, β be integers that satisfy δα ≤ a <
δα+1 and δβ ≤ b < δβ+1. The x interval of an inter-slab query i.e. [a, b] spreads across at
least two vertical slabs. Therefore, QP can be decomposed into five subqueries Q1

P , Q2
P , Q3

P ,
Q4
P and Q5

P as illustrated in Figure 4(b). These subqueries are defined as follows.

Q1
P is the part of QP which is in [δα, δα+1)× [1, δα)× [c,N].

Q2
P is the part of QP which is in [δβ , δβ+1)× [1, δα+1)× [c,N].

Q3
P is the part of QP which is in [δα+1, δβ)× [δα, δα+1)× [c,N].

Q4
P is the part of QP which is in [δα+1, δβ)× [1, δα)× [c,N].

Q5
P is the part of QP which is in [δα, δα+1)× (δα, δα+1)× [c,N].

If α+ 1 = β then we only need to consider subqueries Q1
P , Q2

P and Q5
P . Each of these

subqueries can now be answered as follows.

S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 285

Answering Q1
P . The subquery Q1

P can be answered by retrieving all points in V Sα∩[a,N]×
[1, N] with weight ≥ c. This is a two-dimensional dominance query in V Sα. This can be
achieved by maintaining a three-dimensional dominance query structure for RAM model [1]
for the points in V Si for i = 1, . . . , L separately. The query time will be O(log |V Sα|+K1) =
O(logN +K1), where K1 is the output size and index space is O(

∑L
i=1 |V Si|) = O(N) words.

Answering Q2
P . To answer subquery Q2

P we will retrieve all points in V Sβ∩[1, b)×[1, a) with
weight ≥ c. By maintaining a collection of three-dimensional dominance query structures [1]
occupying linear space overall, Q2

P can be answered in O(logN +K2) time, where K2 is the
output size.

Answering Q3
P . To answer subquery Q3

P , we begin by partitioning the set of points P
into L horizontal slabs HS1, HS2, . . . ,HSL induced by lines y = i∆, such that HSi =
P ∩ [δi+1, N] × [δi, δi+1). The subquery Q3

P can now be answered by retrieving all points
in HSα ∩ [1, δβ) × [1, a) with weight ≥ c. This can be achieved by maintaining a three-
dimensional dominance query structure [1] for the points in HSi for i = 1, ..., L separately.
Since each point in S belongs to at most one HSi the overall space can be bounded by O(N)
words and the query time can be bounded by O(log |HSα|) + K3) = O(logN + K3) time,
with K3 being the number of output.

Answering Q5
P . To answer subquery Q5

P we will retrieve all points in V Sα ∩ (a,N]× [1, a)
with weight ≥ c. By maintaining a collection of three-dimensional dominance query structures
occupying linear space overall as described in earlier subsections, Q5

P can be answered in
O(log |V Sα|+K5) = O(logN +K5) time, where K5 is the output size.

Answering Q4
P . We begin by describing a naive way of answering Q4

P by using a collection
of three-dimensional dominance query structures built for answering Q1

P . We query V Si to
retrieve all the points in V Si ∩ [1, N]× [1, δα) with weight ≥ c for i = α+ 1, ..., β − 1. Such
a query execution requires O((β − α+ 1) logN +K4) time, where K4 is the output size. We
are required to spend O(logN) time for each vertical slab even if the query on a particular
V Si does not produce any output. To answer subquery Q4

P in O(logN +K4) time, we make
following crucial observations: (1) All three boundaries of Q4

P are on the partition lines, (2)
The left boundary of Q4

P (i.e., line x = δα+1) is always the successor of the top boundary
(i.e., line y = δα), (3) The output size is bounded by O(log2 N).

We use these observations to construct following data structure: Since the top left and
bottom right corner of Q4

P falls on the partition lines, there are at most (N/∆)2 possible
different rectangles for Q4

P . For each of these we store at most top-O(log2 N) points in
sorted order of their weight. Space requirement of this data structure is O((N/∆)2 log2 N)
words. Query algorithm first identifies the rectangle that matches with Q4

P among (N/∆)2

rectangles and then simply reports the points with weight greater than c in optimal time.
Finally to achieve linear space, we choose ∆ =

√
N logN .

Thus, we can obtain K = K1 + K2 + K3 + K4 + K5 output in O(K) time. Also, in
the divide and conquer scheme, the point sets used for answering subqueries Q1

P , ..., Q
5
P

are disjoint, hence all reported answers are unique. Now given a query QP(a, b, c), if the
subquery Q4

P in the structure just described returns K4 = log2 N output, it suggest that
output size K > log2 N . Therefore, we can query the structure in lemma 6 and still retrieve
all output in optimal time. This completes the proof of lemma 9. J

ICDT 2015

286 Shared-Constraint Range Reporting

y

US0

US1

US2

BS0 BS1 BS2 BS3

LS1 LS2 LS3

x

y

QUSj

BSj

QLSj

x

Figure 5 Optimal time SCRR query data structure.

6 Linear Space and O(log N + K) Time Data Structure in RAM
Model

In this section, we show how to obtain our O(logN +K) time result stated in Theorem 2
via bootstrapping our previous data structure.

We construct ψ1, ψ2, ..., ψdlog logNe levels of data structures, where ψ1 =
√
N logN and

ψi =
√
ψi−1 logψi−1, for i = 2, 3, ..., dlog logNe. At each level, we use multi-slabs to

partition the points. More formally, at each level ψi, the [1, N]× [1, N] grid is partitioned
into g = dN/ψie vertical slabs or multi-slabs. At level ψi, multi-slabs BS0, BS1, ..., BSg
are the slabs induced by lines x = jψi for j = 0, 1, ..., g. Each multi-slab BSj is further
partitioned into disjoint upper partition USj and lower partition LSj (Figure 5). Below we
describe the data structure and query answering in details.

For a multi-slab BSj and a SCRR query, USj can have more constraints than LSj ,
making it more difficult to answer query on USj . Our idea is to exclude the points of USj
from each level, and build subsequent levels based on only these points. Query answering for
LSj can be done using the inter-slab query data structure and three-sided range reporting
data structure.

At each level ψi, we store the data structure described in Lemma 9 capable of answering
inter-slab queries by taking slab width ∆ =

√
ψi logψi. Also we store separate three-sided

range reporting data structures for each LSj , j = 0, 1, ..., g. The points in USj at level
ψi (for i = 1, · · · , dlog logNe − 1) are removed from consideration. These removed points
are considered in subsequent levels. Note that the inter-slab query data structure stored
here is slightly different from the data structure described in lemma 9, since we removed
the points of USj (region 5 of figure 4b). ψdlog logNe is the bottom level and no point
is removed from here. Level ψi+1 contains only the points of all the USj partitions from
previous level ψi, and again the upper partition points are removed at level ψi+1. More
specifically, level ψ1 contains an inter-slab query data structure and

√
N logN number of

separate two-dimensional three-sided query data structures over each of the lower partitions
LSj . Level ψ2 contains

√
N logN number of data structures similar to level ψ1 corresponding

to each of the upper partitions USj of level ψ1. Subsequent levels are constructed in a similar
way. No point is repeated at any level, two-dimensional three-sided query data structures
and inter-slab query data structures take linear space, giving linear space bound for the
entire data structure.

A SCRR query QP can be either an inter-slab or an intra-slab query at level ψi (illustrated
in figure 6). An intra-slab SCRR query QP can be divided into QUSi

and QLSi
. QLSi

is

S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 287

three-sided query in LSi, which can be answered by the three-sided range reporting structure
stored at LSi. QUSi

is issued as a SCRR query for level ψi+1 and can be answered by
traversing at most dlog logNe levels. An inter-slab SCRR query QP can be decomposed
into 5 sub-queries: Q1, Q2, Q3, Q4 and Q5. Q1, Q2, Q3 and Q4 can be answered using
the optimal inter-slab query data structure of lemma 9 in similar way described in details
in section 5. Again Q5 is issued as a SCRR query for level ψi+1 and can be answered in
subsequent levels. At each level O(logψi +Ki) time is needed where Ki is the output size
obtained at level ψi. Since no point is repeated at any level, all reported answers are unique.
At most log logN levels need to be accessed for answering QP . Total time is bounded by
O(

∑log logN
i=1 (logψi) + log logN +

∑log logN
i=1 (Ki)) = O(logN +K), thus proving theorem 2.

7 SCRR Query in External Memory

In this section we discuss two external memory data structures for SCRR query, one achieving
optimal I/O and another achieving linear space. Both these data structures are obtained by
modifying our RAM model data structure. We use the multi-slab ideas similar to section 5.
We assume points in P to be in rank-space. We begin by stating external memory variants
of lemma 6 and lemma 9.

I Lemma 10. By maintaining an O(N)-word structure, any SCRR query QP(·, ·, ·) can be
answered in O(log2(N/B) +K/B) I/Os, where K is the output size.

Proof. We use dlog(N/B)e number of oblique slabs induced by lines x = y + 2iB for
i = 0, 1, ...dlog(N/B)e. Each oblique slab is partitioned into tiles using axis parallel lines
x = (2(i−1) ∗ (1 + j))B and y = 2(i−1) ∗ jB for j = 1, 2, It can be easily shown that any
SCRR query QP(a, b, d) intersects with at most O(log(N/B)) tiles, each of which can be
resolved in linear space and optimal I/Os using three-dimensional query structure [1] in each
tile, achieving O(log2(N/B) +K/B) total I/Os. J

I Lemma 11. Inter-slab SCRR queries can be answered in O(logB N +K/B) I/Os using a
data structure occupying O(N) words space, where K represents the number of outputs.

Proof. This can be achieved by using a data structure similar to the one described in lemma 9
with ∆ =

√
NB logB N . We use external memory counterparts for three sided and three

dimensional dominance reporting and for answering query Q4
p we maintain top O(log2

BN)
points from each of the rectangle. J

7.1 Linear Space Data Structure
The linear space data structure is similar to the RAM model linear space and optimal time
structure described in section 6. Major difference is we use ψi =

√
ψi−1B logB ψi−1 for

bootstrapping and use the external memory counterparts of the data structures.
We construct ψ1, ψ2, ..., ψdlog logNe levels of data structures, where ψ1 =

√
NB logB N

and any ψi =
√
ψi−1B logB ψi−1. At each level ψi, the [1, N]× [1, N] grid is partitioned into

g = dN/ψie vertical slabs. Multi-slabs BSj , upper partition USj and lower partition LSj
for j = 0, 1, ..., g are defined similar to section 6.

At each level ψi, we store the data structure described in Lemma 11 capable of answering
inter-slab queries in optimal I/Os by taking slab width ∆ =

√
ψiB logB ψi. Also we store sep-

arate three-sided external memory range reporting data structures for each LSj , j = 0, 1, ..., g.
In order to maintain linear space, the points in USj at level ψi (for i = 1, · · · , dlog logNe−1)

ICDT 2015

288 Shared-Constraint Range Reporting

y

QUSi

BSi

QLSi

x

y

Bα Bα+1 Bβ· · · · · ·
a b

Q5 Q3

Q4Q1 Q2

Figure 6 Intra-slab and Inter-slab query for linear space data structure.

are removed from consideration. These removed points are considered in subsequent levels.
ψdlog logNe is the bottom level and no point is removed from here. Level ψi+1 contains only
the points of all the USj partitions from previous level ψi, and again the upper partition
points are removed at level ψi+1. External memory two-dimensional three-sided query data
structures and optimal inter-slab query data structures for external memory take linear space,
and we avoided repetition of points in different levels, thus the overall data structure takes
linear space.

Query answering is similar to section 6. If the SCRR query QP is intra-slab, then QP can
be divided into QUSi

and QLSi
. QLSi

is three-sided query in LSi, which can be answered by
the three-sided range reporting structure stored at LSi. QUSi

is issued as a SCRR query
for level ψi+1 and can be answered by traversing at most dlog logNe levels. An inter-slab
SCRR query QP can be decomposed into 5 sub-queries: Q1, Q2, Q3, Q4 and Q5. Q1, Q2,
Q3 and Q4 can be answered using the optimal inter-slab query data structure of lemma 11
in similar way described in details in section 5. Again Q5 is issued as a SCRR query for
level ψi+1 and can be answered in subsequent levels. At each level O(logB ψi +Ki/B) I/Os
are needed where Ki is the output size obtained at level ψi. Since no point is repeated at
any level, all reported answers are unique. At most log logN levels need to be accessed for
answering QP . Total I/O is bounded by O(

∑log logN
i=1 (logB ψi)+log logN+

∑log logN
i=1 (Ki/B))

= O(logB N + log logN +K/B) thus proving theorem 3.

7.2 I/O Optimal Data Structure
I/O optimal data structure is quite similar to the linear space data structure. The major
difference is the points in USj at level ψi (for i = 1, · · · , dlog logNe − 1) are not removed
from consideration. Instead at each USj we store external memory data structure capable of
answering inter-slab query optimally(Lemma 11). All the points of USj (j = 0, 1, ..., g) of
level ψi (for i = 1, · · · , dlog logNe − 1) are repeated in the next level ψi+1. This will ensure
that we will have to use only one level to answer the query. For LSj (j = 0, 1, ..., g), we
store three-sided query structures. Since there are log logN levels, and at each level data
structure uses O(N) space, total space is bounded by O(N log logN). To answer a query QP ,
we query the structures associated with ψi such that QP is an intra-slab query for ψi and is
inter-slab for ψi+1. We can decompose the query QP into QUS and QLS , where QUS(QLS)
falls completely within USj(LSj). Since, QUS is an inter-slab query for the inter-slab query
data structure stored at USj , it can be answered optimally. Also QLS is a simple three-sided
query for which output can be retrieved in optimal time using the three-sided structure of
LSj . This completes the proof for Theorem 4.

S. Biswas, M. Patil, R. Shah, and S. V. Thankachan 289

8 Conclusions

In many applications which require range queries, some of the input constraints are shared
and not really independent. We give first non trivial indexes for handling such cases breaking
the currently known O(N logεN) space barrier for four-sided queries in Word-RAM model.
In Word-RAM model, we obtained linear space and optimal time index for answering SCRR
queries. Our optimal I/O index in external memory takes O(N log logN) words of space
and answer queries optimally. We also present a linear space index for external memory.
We leave it as an open problem to achieve optimal space bounds, avoiding the O(log logN)
blowup in external memory model. Also it will be interesting to see whether such results can
be obtained in Cache Oblivious model.

Acknowledgements. This work is supported by US NSF Grants CCF–1017623, CCF–
1218904.

References

1 Peyman Afshani. On dominance reporting in 3d. In ESA, pages 41–51, 2008.
2 Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting in

three and higher dimensions. In FOCS, pages 149–158, 2009.
3 Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting:

query lower bounds, optimal structures in 3-d, and higher-dimensional improvements. In
Symposium on Computational Geometry, pages 240–246, 2010.

4 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for ortho-
gonal range searching. In FOCS, pages 198–207, 2000.

5 Lars Arge, Mark de Berg, Herman J. Haverkort, and Ke Yi. The priority r-tree: A prac-
tically efficient and worst-case optimal r-tree. In SIGMOD Conference, pages 347–358,
2004.

6 Lars Arge, Vasilis Samoladas, and Jeffrey Scott Vitter. On two-dimensional indexability
and optimal range search indexing. In PODS, pages 346–357, 1999.

7 Jon Louis Bentley. Multidimensional divide-and-conquer. Commun. ACM, 23(4):214–229,
1980.

8 Gerth Stølting Brodal and Kasper Green Larsen. Optimal planar orthogonal skyline count-
ing queries. CoRR, abs/1304.7959, 2013.

9 Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. Orthogonal range searching
on the ram, revisited. In Symposium on Computational Geometry, pages 1–10, 2011.

10 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17(3):427–462, 1988.

11 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput., 17(3):427–462, 1988.

12 Bernard Chazelle. Lower bounds for orthogonal range searching i. the reporting case. J.
ACM, 37(2):200–212, 1990.

13 Bernard Chazelle. Lower bounds for orthogonal range searching ii. the arithmetic model.
J. ACM, 37(3):439–463, 1990.

14 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Space-
efficient frameworks for top-k string retrieval. J. ACM, 61(2):9, 2014.

15 Marek Karpinski and Yakov Nekrich. Top-k color queries for document retrieval. In SODA,
pages 401–411, 2011.

ICDT 2015

290 Shared-Constraint Range Reporting

16 Casper Kejlberg-Rasmussen, Yufei Tao, Konstantinos Tsakalidis, Kostas Tsichlas, and
Jeonghun Yoon. I/o-efficient planar range skyline and attrition priority queues. In PODS,
pages 103–114, 2013.

17 Kasper Green Larsen and Rasmus Pagh. I/o-efficient data structures for colored range and
prefix reporting. In SODA, pages 583–592, 2012.

18 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 657–666, 2002.

19 Yakov Nekrich. External memory range reporting on a grid. In ISAAC, pages 525–535,
2007.

20 Darren Erik Vengroff and Jeffrey Scott Vitter. Efficient 3-d range searching in external
memory. In STOC, pages 192–201, 1996.

	Introduction
	Applications
	Rank-Space Reduction of Points
	The Framework
	Towards O(logN +K) Time Solution
	Linear Space and O(logN +K) Time Data Structure in RAM Model
	SCRR Query in External Memory
	Linear Space Data Structure
	I/O Optimal Data Structure

	Conclusions

