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Abstract
Let F ∈ C[x, y, z] be a constant-degree polynomial, and let A,B,C ⊂ C with |A| = |B| = |C| = n.
We show that F vanishes on at most O(n11/6) points of the Cartesian product A×B×C (where
the constant of proportionality depends polynomially on the degree of F ), unless F has a special
group-related form. This improves a theorem of Elekes and Szabó [2], and generalizes a result of
Raz, Sharir, and Solymosi [9]. The same statement holds over R. When A,B,C have different
sizes, a similar statement holds, with a more involved bound replacing O(n11/6).

This result provides a unified tool for improving bounds in various Erdős-type problems in
combinatorial geometry, and we discuss several applications of this kind.
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1 Introduction

In 2000, Elekes and Rónyai [1] proved the following result. Given a constant-degree real
polynomial f(x, y), and finite sets A,B,C ⊂ R each of size n, we have∣∣ {(x, y, z) ∈ R3 | z − f(x, y) = 0

}
∩ (A×B × C)

∣∣ = o(n2),

unless f has one of the forms f(x, y) = g(h(x) + k(y)) or f(x, y) = g(h(x)k(y)), with
univariate real polynomials g, h, k. Recently, Raz, Sharir, and Solymosi [9] extended an
argument introduced in [11] to improve the upper bound (when f does not have one of the
special forms) to O(n11/6) (where the constant of proportionality depends polynomially on
the degree of f).

Elekes and Szabó [2] generalized the result of [1] to any complex algebraic surface

Z(F ) :=
{

(x, y, z) ∈ C3 | F (x, y, z) = 0
}
,
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where F is an irreducible polynomial in C[x, y, z]. They showed that if A,B,C ⊂ C are finite
sets, each of size n, then |Z(F ) ∩ (A×B × C)| is subquadratic in n, unless F has a certain
exceptional form. The exceptional form of F in this statement is harder to describe (see (ii)
in Theorem 1.1 below), but is related to an underlying group structure that describes the
dependencies of F on each of the variables (similar to the addition or multiplication that
appear in the exceptional forms of F (x, y, z) = z − f(x, y) in [1, 9]). The upper bound that
Elekes and Szabó obtained, when F is not exceptional, was |Z(F )∩ (A×B×C)| = O(n2−η),
for a constant η > 0 that depends on the degree of F , and which they did not make explicit.

Our results. In this paper, we show that the theorem of Elekes and Szabó holds for η = 1/6,
thereby extending the strengthened result of [9] to the generalized setup in [2]. More precisely,
our main result is the following theorem.

I Theorem 1.1 (Balanced case). Let F ∈ C[x, y, z] be an irreducible polynomial of degree
d, and assume that none of the derivatives ∂F/∂x, ∂F/∂y, ∂F/∂z is identically zero. Then
one of the following two statements holds.
(i) For all A,B,C ⊂ C with |A| = |B| = |C| = n we have

|Z(F ) ∩ (A×B × C)| = O(d13/2n11/6).

(ii) There exists a one-dimensional subvariety Z0 ⊂ Z(F ), such that for every v ∈ Z(F )\Z0,
there exist open sets D1, D2, D3 ⊂ C and analytic functions ϕi : Di → C for i = 1, 2, 3,
such that v ∈ D1 ×D2 ×D3, and, for every (x, y, z) ∈ D1 ×D2 ×D3,

(x, y, z) ∈ Z(F ) if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0.

When property (ii) holds, property (i) fails. Indeed, consider any v = (x0, y0, z0) and
ϕi, Di as in property (ii). If we set t1 = ϕ1(x0), t2 = ϕ2(y0), and t3 = ϕ3(z0), then we
have t1 + t2 + t3 = 0. Now choose A ⊂ D1, B ⊂ D2, and C ⊂ D3 so that ϕ1(A) =
{t1 +a, t1 + 2a, . . . , t1 +na}, ϕ2(B) = {t2 +a, t2 + 2a, . . . , t2 +na}, and ϕ3(C) = {t3−a, t3−
2a, . . . , t3 − na}; this is clearly possible for a ∈ C with a sufficiently small absolute value.
Then |Z(F ) ∩ (A×B × C)| ≥ n2/4.

Our proof also works when the sets A,B,C do not have the same size. Such an “unbal-
anced” form was not considered in [1] or [2], but similar unbalanced bounds were obtained
in [9], and they are useful in applications where the roles of A,B,C are not symmetric. We
obtain the following result, which subsumes Theorem 1.1; we have stated both for clarity.

I Theorem 1.2 (Unbalanced case). In Theorem 1.1, property (i) can be replaced by:
(i*) For all triples A,B,C ⊂ C of finite sets, we have

|Z(F ) ∩ (A×B × C)| = O
(

min
{
d
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1
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1
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1
2
(
|C|

1
2 + |A|+ |B|

)})
.

We also have the following specialization of Theorem 1.2 when F is a real polynomial.
Note that, when F is real, it does not immediately follow from Theorems 1.1 and 1.2 that,
in property (ii) there, the functions ϕi can be chosen so that they map R to R. We write
ZR(F ) for the real zero set of a real polynomial defined over R.
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I Theorem 1.3 (Real case). Let F ∈ R[x, y, z] be a polynomial of degree d that is irreducible
over R. Assume that ZR(F ) has dimension two. Then property (ii) in both Theorems 1.1
and 1.2 can be replaced by:
(ii)R There exists a one-dimensional subvariety Z0 ⊂ ZR(F ) (whose degree is polynomial

in d), such that for every v ∈ ZR(F )\Z0, there exist open intervals I1, I2, I3 ⊂ R, and
real-analytic functions ϕi : Ii → R for i = 1, 2, 3, such that v ∈ I1 × I2 × I3, and, for
every (x, y, z) ∈ I1 × I2 × I3,

(x, y, z) ∈ Z(F ) if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0.

The proof of Theorem 1.3 is omitted in this version.

Discussion. Although the results in this paper generalize those of Raz et al. [9], the analysis
here is quite different and considerably more involved. The overlap between the two studies
is only in the initial reduction of the problem to an incidence problem between points and
curves (see below). The remaining and major part of the paper applies totally different
machinery. Instead of the purely algebraic study of properties of polynomials that was used
in [9], the approach here requires more advanced tools from algebraic geometry, and applies
them in a considerably more involved style, inspired in part by a technique used by Tao [14]
for a problem in finite fields.

That the current problem is considerably more difficult than the Elekes–Rónyai problem
(in spite of their similarities) can also be seen by comparing the original respective studies in
[1] and in [2]. We regard the considerable simplification (on top of the improvement in the
bound) of the analysis of Elekes and Szabó in [2] as a major outcome of this paper.

We note that the polynomial dependence of our bound on the degree of F is also a
significant feature, because it allows us to obtain non-trivial bounds for polynomials of
non-constant degree. This arises for example in the application of obtaining lower bounds
for the number of distinct distances between points on an algebraic curve (as discussed
below), where the bound is still non-trivial when the degree of the curve is non-constant. An
improved dependence on d would allow us to treat more general sets of points, and get closer
(and perhaps even reconstruct) the general lower bound of Guth and Katz [6].

Consequences. Besides being an interesting problem in itself, the Elekes-Szabó setup arises
in many problems in combinatorial geometry. To demonstrate this, consider the problem
of obtaining a lower bound for the number of distinct distances determined between three
non-collinear points p1, p2, p3 and a set P of n other points in the plane, studied in [2, 12].
To cast this problem into the Elekes–Szabó mold, let D denote the set of the squared
distances between the points pi and those of P . Write pi = (ai, bi), for i = 1, 2, 3. A point
q = (t, s) ∈ R2 determines three squared distances to p1, p2, p3, given by

X = (t− a1)2 + (s− b1)2, Y = (t− a2)2 + (s− b2)2, Z = (t− a3)2 + (s− b3)2.

Eliminating t and s from these equations yields a quadratic equation F (X,Y, Z) = 0. By
construction, for each point q ∈ P , each of the corresponding squared distances X, Y , Z
belongs to D. Moreover, the resulting triples (X,Y, Z) are all distinct, and so F vanishes at
n triples of D ×D ×D. Moreover, since p1, p2, p3 are non-collinear, one can show that F
does not have the special form in property (ii)R of Theorem 1.3. So one gets n = O(|D|11/6),
or |D| = Ω(n6/11), which is the same lower bound obtained in [12], using a direct ad-hoc
analysis. Note that for p1, p2, and p3 collinear, F becomes a linear polynomial, in which
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case it certainly satisfies property (ii)R, and the above bound on |D| does not hold – it can
be Θ(n1/2) in this case.

Geometric questions which involve Euclidean distances, slopes, or collinearity often lead
to polynomial relations of the form F (x, y, z) = 0, and can be reduced to studying the
number of zeros of such polynomials attained on a Cartesian product. The following is a
sample of problems that fit into this framework: (i) Bounding from below the number of
distinct distances [8, 11] determined by a set of n points lying on a planar algebraic curve.
(ii) Bounding from above the number of triple intersection points for three families of n unit
circles, each consisting of circles that pass through a fixed point [4, 10]. (iii) Bounding from
below the number of collinear triples among n points on an algebraic curve in R2 [3].

Due to lack of space, many details are omitted in this abstract and are given in the full
version of the paper.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2, up to the crucial Proposition 2.3 that we prove in
Section 3. Let F ∈ C[x, y, z] be an irreducible polynomial of degree d. Let A,B,C ⊂ C be
finite, and putM := |Z(F )∩(A×B×C)|; this is the quantity we wish to bound. The strategy
of the proof is to transform the problem of bounding M into an incidence problem for points
and curves in C2. The latter problem can then be tackled using a Szemerédi-Trotter-like
incidence bound, provided that the resulting curves have well-behaved intersections, in the
following sense.

I Definition 2.1. We say that a system (Π,Γ), where Π is a finite set of distinct points in
C2, and Γ is a finite multiset of curves in C2, has (λ, µ)-bounded multiplicity if
(a) for any curve γ ∈ Γ, there are at most λ curves γ′ ∈ Γ (counted with multiplicity) such

that there are more than µ points contained in both γ and γ′; and
(b) for any point p ∈ Π, there are at most λ points p′ ∈ Π such that there are more than µ

curves (counted with multiplicity) that contain both p and p′.

A major component of the proof is to show that if the points and curves that we are
about to define fail to satisfy the conditions of (λ, µ)-bounded multiplicity, then Z(F ) must
have the special form described in property (ii) of Theorem 1.2.

Quadruples. Define Q :=
{

(b, b′, c, c′) ∈ B2 × C2 | ∃a ∈ A s.t. F (a, b, c) = F (a, b′, c′) = 0
}
.

The following inequality bounds M in terms of |Q|.

I Lemma 2.2. We have M = O
(
d1/2|A|1/2|Q|1/2 + d2|A|

)
.

Proof. For each a ∈ A, we write (B × C)a := {(b, c) ∈ B × C | F (a, b, c) = 0}. Using the
Cauchy-Schwarz inequality, we have

M =
∑
a∈A
| (B × C)a | ≤ |A|

1/2
(∑
a∈A
| (B × C)a |

2
)1/2

.

Define R := {(a, b, b′, c, c′) ∈ A×B2 × C2 | F (a, b, c) = F (a, b′, c′) = 0}, and consider the
standard projection τ : C × C4 → C4 (in which the first coordinate is discarded). We
have Q = τ(R) and M ≤ |A|1/2|R|1/2.

We claim that |R| ≤ d|Q|+ d4|A|. To prove this, let

S :=
{

(b, b′, c, c′) ∈ B2 × C2 | F (a, b, c) ≡ 0 and F (a, b′, c′) ≡ 0 (as polynomials in a)
}
.

SoCG’15
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We prove in the full version that |S| = O(d4). Observe that for (b, b′, c, c′) ∈ Q\S we have
|τ−1(b, b′, c, c′) ∩R| ≤ d, while for (b, b′, c, c′) ∈ S we have |τ−1(b, b′, c, c′) ∩R| = |A|. Thus

|R| = |τ−1(Q)| = |τ−1(Q\S)|+ |τ−1(S)| ≤ d|Q|+ d4|A|,

which proves the claim and the lemma. J

In what follows, we derive an upper bound on |Q|. It will turn out that, when we fail to
obtain the bound we are after, F must have the special form in property (ii).

Curves and dual curves. For every point (y, y′) ∈ C2, we define

γy,y′ := Cl
({

(z, z′) ∈ C2 | ∃x ∈ C such that F (x, y, z) = F (x, y′, z′) = 0
})
,

where Cl(X) stands for the Zariski closure of X. We show in the full version that there exists
an exceptional set S ⊂ C2 of size O(d4), such that for every (y, y′) ∈ C2\S the set γy,y′ is an
algebraic curve of degree at most d2, or an empty set (a possibility we can safely ignore).

We define, in an analogous manner, a dual system of curves by switching the roles of the
y- and z-coordinates, as follows. For every point (z, z′) ∈ C2, we define

γ∗z,z′ := Cl
({

(y, y′) ∈ C2 | ∃x ∈ C such that F (x, y, z) = F (x, y′, z′) = 0
})
.

As above, here too our (omitted) analysis yields an exceptional set T of size O(d4), such that
for every (z, z′) ∈ C2\T the set γ∗z,z′ is an algebraic curve of degree at most d2 (or empty).

By a standard argument (omitted here), the closure in the definitions of γy,y′ and γ∗z,z′
adds only finitely many points. It follows that, for all but finitely many points (z, z′) ∈ γy,y′ ,
we have (y, y′) ∈ γ∗z,z′ . Symmetrically, for all but finitely many (y, y′) ∈ γ∗z,z′ we have
(z, z′) ∈ γy,y′ .

We set m := d4 throughout this proof. We say that an irreducible algebraic curve γ ⊂ C2

is a popular curve if there exist at least m + 1 distinct points (y, y′) ∈ C2\S such that
γ ⊂ γy,y′ . We denote by C the set of all popular curves. Similarly, we say that an irreducible
algebraic curve γ∗ ⊂ C2 is a popular dual curve, if there exist at least m+ 1 distinct points
(z, z′) ∈ C2\T such that γ∗ ⊂ γ∗z,z′ . We denote by D the set of all popular dual curves.

The main step in our proof is the following proposition, whose proof takes up Section 3.
Note that its statement is only about F and does not involve the specific sets A,B,C.

I Proposition 2.3. Either F satisfies property (ii) of Theorem 1.2, or the following holds.
(a) There exists an algebraic curve X ⊂ C2 of degree O(d11) containing S, such that for

every (y, y′) ∈ C2\X , no irreducible component of γy,y′ is a popular curve.
(b) There exists an algebraic curve Y ⊂ C2 of degree O(d11) containing T , such that for

every (z, z′) ∈ C2\Y, no irreducible component of γ∗z,z′ is a popular dual curve.

Incidences. We continue with the analysis, assuming the truth of Proposition 2.3. We
introduce the following set of points and multiset of curves:

Π := (C × C)\Y and Γ := {γb,b′ | (b, b′) ∈ (B ×B)\X}.

By definition, for every (b, b′, c, c′) ∈ Q, we have (c, c′) ∈ γb,b′ and (b, b′) ∈ γ∗c,c′ (albeit
not necessarily vice versa, because the definition of the curves involves a closure, and does
not require x to be in A). This lets us relate |Q| to I(Π,Γ), the number of incidences
between these points and curves; since Γ is a multiset, these incidences are counted with the
multiplicity of the relevant curves. Specifically, we show in the full version:

I Lemma 2.4. We have |Q| ≤ I(Π,Γ) +O
(
d13|B||C|+ d4|B|2 + d4|C|2

)
.
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Bounded multiplicity. We claim that the system (Π,Γ) has (d6, d4)-bounded multiplicity.
Indeed, by Proposition 2.3(a) and the fact that we have avoided X when defining Γ, any
component of a curve γ ∈ Γ is not in C, and is thus shared with at most m = d4 other curves.
The curve γ has at most d2 irreducible components, so there are at most md2 = d6 curves
γ′ ∈ Γ such that γ and γ′ have a common component. Curves γ′ that do not have a common
component with γ intersect it in at most d4 points by Bézout’s inequality; thus condition (a)
in the definition of (d6, d4)-bounded multiplicity is satisfied. The argument for condition (b)
is fully symmetric.

Incidence bound. In the full version of this paper we derive an incidence bound, based on
that of Solymosi and De Zeeuw [13], resembling the classical Szemerédi-Trotter point-line
incidence bound. It applies to a set Π of points and a multiset Γ of algebraic curves, each of
degree at most δ, in C2, such that Π is a Cartesian product and (Π,Γ) have (λ, µ)-bounded
multiplicity as in Definition 2.1. The analysis culminates in the incidence bound

I(Π,Γ) = O
(
δ4/3λ4/3µ1/3|Π|2/3|Γ|2/3 + λ2µ|Π|+ δ4λ|Γ|

)
.

Specializing this, with δ = d2, λ = d6, and µ = d4, we get

I(Π,Γ) = O
(

(d2)4/3(d6)4/3(d4)1/3|B|4/3|C|4/3 + (d6)2d4|B|2 + (d2)4d6|C|2
)

= O
(
d12|B|4/3|C|4/3 + d16|B|2 + d14|C|2

)
,

which, together with Lemma 2.4, gives

|Q| = I(Π,Γ) +O
(
d13|B||C|+ d4|B|2 + d4|C|2

)
= O(d12|B|4/3|C|4/3 + d16|B|2 + d14|C|2).

Then, from Lemma 2.2, we get

M ≤ d1/2|A|1/2|Q|1/2 + d2|A|

= O
(
d13/2|A|1/2|B|2/3|C|2/3 + d17/2|A|1/2|B|+ d15/2|A|1/2|C|+ d2|A|

)
,

which gives the first of the three bounds in Theorem 1.2(i). The other two follow symmetrically.

3 Proof of Proposition 2.3

3.1 Overview of the proof
We adapt an idea used by Tao [14] to study the expansion of a polynomial P (x, y) over finite
fields. As part of his analysis he considered the map Ψ : C4 → C4 defined by

Ψ : (a, b, c, d) 7→ (P (a, c), P (a, d), P (b, c), P (b, d)).

Tao showed that if the image Ψ(C4) is four-dimensional, then lower bounds on the expansion
of P can be derived. On the other hand, if the image has dimension at most three, then
P must have one of the special forms G(H(x) + K(y)) or G(H(x)K(y)), for polynomials
G,H,K (as in [1, 9]; see also the introduction). Tao proved this by observing that in this
case the determinant of the Jacobian matrix of Ψ must vanish identically, leading to an
identity for the partial derivatives of P , from which the special forms of P can be deduced.
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Following Tao’s general scheme, albeit in a different context, we define a variety

V :=
{

(x, x′, y, y′, z1,z2, z3, z4) ∈ C8 | (1)
F (x, y, z1) = F (x, y′, z2) = F (x′, y, z3) = F (x′, y′, z4) = 0

}
.

Note that if we fix y, y′ in V and eliminate x, x′, the range of the last four coordinates of V
is γy,y′ × γy,y′ (up to the closure operation). Near most points v ∈ V , we use the implicit
function theorem to represent V as the graph of a locally defined analytic function (which
serves as a local analogue of the map Ψ above)

Φv : (x, x′, y, y′) 7→
(
g1(x, y), g2(x, y′), g3(x′, y), g4(x′, y′)

)
.

If the determinant of the Jacobian of Φv vanishes at v, for all v in some relatively open
subset of V , it leads to the special form of F . This derivation is similar to that of Tao, but
our special form requires a somewhat different treatment.

The other side of our argument, when the determinant of the Jacobian is not identically
zero, as above, is very different from that of Tao. Here we want to show that there are only
finitely many popular curves. (The actual property that we show is somewhat different,
but this is the spirit of our analysis.) We show that if γ is a popular curve (i.e., there are
more than d4 curves γy,y′ ∈ Γ that contain γ), then it is infinitely popular, in the sense that
there is a one-dimensional curve γ∗ of pairs (y, y′) ∈ C2 for which γy,y′ contains γ. For V ,
this implies that if we restrict (y, y′) to γ∗ and project to the last four coordinates, then
the image is contained in γ × γ. In other words, the local map Φv sends an open subset
of the three-dimensional variety C2 × γ∗ to an open subset of the two-dimensional variety
γ × γ. The inverse mapping theorem now tells us that the determinant of the Jacobian
of Φv vanishes on the three-dimensional variety C2 × γ∗. Given that this determinant is
not identically zero, its zero set is three-dimensional, so C2 × γ∗ must be one of its Od(1)
irreducible components. It follows that there are only Od(1) popular curves, which essentially
establishes Proposition 2.3.

3.2 The varieties V , V0 and W
Consider the variety V ⊂ C8 as defined in (1). V is not empty since, for any point
(x, y, z) ∈ Z(F ), it contains (x, x, y, y, z, z, z, z) . It follows that V has dimension at least
four; it can in fact be shown that V is four-dimensional. However, our analysis requires that
the projection of V to the first four coordinates is four-dimensional, which does not follow
directly. We show this in the following lemma. Throughout Section 3 we write π1 : C8 → C4

and π2 : C8 → C4 for the standard projections onto the first and the last four coordinates,
respectively.

I Lemma 3.1. We have Cl(π1(V )) = C4.

Proof. Let (x0, x
′
0, y0, y

′
0) ∈ C4. There exist z1, z2, z3, z4 ∈ C such that

F (x0, y0, z1) = F (x0, y
′
0, z2) = F (x′0, y0, z3) = F (x′0, y′0, z4) = 0,

unless we have F (x0, y0, z) ≡ c for some nonzero c ∈ C, or a similar identity holds for one of
the pairs (x0, y

′
0), (x′0, y0), (x′0, y′0). In other words, we have (x0, x

′
0, y0, y

′
0) ∈ π1(V ) unless

one of these exceptions holds.
Let σ := Cl

(
{(x0, y0) ∈ C2 | ∃c such that F (x0, y0, z) ≡ c}

)
(note that here we include

the case c = 0). We show (in the full version) that dim(σ) ≤ 1, so the set

σ′ := {(x, x′, y, y′) | one of (x, y), (x, y′), (x′, y), (x′, y′) is in σ}
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has dimension at most 3. By standard properties of the closure operation, we have
Cl(C4\σ′) = C4. As observed above, we have C4\σ′ ⊂ π1(V ), so we get C4 = Cl(C4\σ′) ⊂
Cl(π1(V )) ⊂ C4 and hence Cl(π1(V )) = C4. J

We use the implicit function theorem to locally express each of the variables z1, z2, z3, z4
in terms of the corresponding pair of the first four variables x, x′, y, y′. To facilitate this we
first exclude the subvariety of V defined by V0 := V1 ∪ V2 ∪ V3, where

Vi := {(x, x′, y, y′, z1, z2, z3, z4) ∈ V | Fi(x, y, z1)Fi(x, y′, z2)Fi(x′, y, z3)Fi(x′, y′, z4) = 0} ,

and Fi stands for the derivative of F with respect to its ith variable, for i = 1, 2, 3.
The following lemma, whose proof we omit, asserts that Cl(π1(V0)) is a subvariety of V

of dimension ≤ 3. This property allows us to exclude Cl(π1(V0)) in most of our proof.

I Lemma 3.2. Cl(π1(V0)) has dimension at most three.

As explained in Section 3.1, we want to view V , around most of its points, as the graph
of a locally defined mapping. We now define this mapping.

I Lemma 3.3. For each point v ∈ V \V0, there is an open neighborhood Nv ⊂ C8 of
v such that V0 ∩ Nv = ∅, and an analytic mapping Φv : π1(Nv) → π2(Nv), such that
V ∩Nv = {(u,Φv(u)) | u ∈ π1(Nv)}.

Proof. Let v = (a, a′, b, b′, c1, c2, c3, c4) ∈ V \V0 be an arbitrary point. We apply the implicit
function theorem (see [5]) to the equation F (x, y, z1) = 0 at the point (a, b, c1). Since v 6∈ V0,
we have F3(a, b, c1) 6= 0. We thus obtain neighborhoods U of (a, b) in C2 and V of c1 in C,
and an analytic mapping g1 : U → V such that

{(x, y, z1) ∈ U × V | F (x, y, z1) = 0} = {(x, y, g1(x, y)) | (x, y) ∈ U}.

We can do the same at each of the points (a, b′, c2), (a′, b, c3), (a′, b′, c4), leading to
analogous mappings g2, g3, g4. It follows that we can find neighborhoods N1 of a, N2 of a′,
N3 of b, and N4 of b′, such that the mapping

Φv : (x, x′, y, y′) 7→
(
g1(x, y), g2(x, y′), g3(x′, y), g4(x′, y′)

)
is defined and analytic over N1 ×N2 ×N3 ×N4. Then

Nv := (N1 ×N2 ×N3 ×N4)× Φv(N1 ×N2 ×N3 ×N4)

is a neighborhood of v in C8 satisfying the conclusion of the lemma. If needed, we can shrink
it to be disjoint from V0. J

Let G be the polynomial in C[x, x′, y, y′, z1, z2, z3, z4] given by

G = F2(x, y, z1)F1(x, y′, z2)F1(x′, y, z3)F2(x′, y′, z4)
− F1(x, y, z1)F2(x, y′, z2)F2(x′, y, z3)F1(x′, y′, z4).

Consider the subvariety W := V ∩ Z(G) of V . The significance of W (and of G) lies in the
following lemma.

I Lemma 3.4. For v ∈ V \V0 we have v ∈W if and only if det(JΦv (π1(v))) = 0.
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Proof. We write gij for the derivative of the function gi (from the proof of Lemma 3.3), within
its domain of definition, with respect to its jth variable, for i = 1, 2, 3, 4, and j = 1, 2. The
Jacobian matrix of Φv, evaluated at u = (x, x′, y, y′) ∈ π1(Nv), where Nv is the neighborhood
of v given in Lemma 3.3, equals

JΦv
(u) =


g11(x, y) g21(x, y′) 0 0

0 0 g31(x′, y) g41(x′, y′)
g12(x, y) 0 g32(x′, y) 0

0 g22(x, y′) 0 g42(x′, y′)

 , (2)

or, by implicit differentiation,

JΦv
(u) =


−F1(x,y,z1)
F3(x,y,z1) −F1(x,y′,z2)

F3(x,y′,z2) 0 0
0 0 −F1(x′,y,z3)

F3(x′,y,z3) −F1(x′,y′,z4)
F3(x′,y′,z4)

−F2(x,y,z1)
F3(x,y,z1) 0 −F2(x′,y,z3)

F3(x′,y,z3) 0
0 −F2(x,y′,z2)

F3(x,y′,z2) 0 −F2(x′,y′,z4)
F3(x′,y′,z4)

 ,

for z1 = g1(x, y), z2 = g2(x, y′), z3 = g3(x′, y), and z4 = g4(x′, y′). Since Nv ∩ V0 = ∅,
all the denominators are non-zero (and, for that matter, also all the numerators). Write
v = (a, a′, b, b′, c1, c2, c3, c4). Computing this determinant explicitly at the point u = π1(v) =
(a, a′, b, b′), noticing that by construction c1 = g1(a, b), c2 = g2(a, b′), c3 = g3(a′, b), and
c4 = g4(a′, b′), and clearing denominators, gives exactly G(v), where G is the polynomial
defining W . Thus, det JΦv

(π1(v)) = 0 if and only if G(v) = 0. J

3.3 The varieties Vγ
We now make precise what it means for a popular curve to be infinitely popular.

I Definition 3.5. Let γ ⊂ C2 be an irreducible curve. An irreducible curve γ∗ ⊂ C2 is an
associated curve of γ if for all but finitely many (y, y′) ∈ γ∗ we have γ ⊂ γy,y′ .

Throughout this section, we will let γ denote a popular curve and γ∗ an associated curve of
γ. In Section 3.4, we will show that every γ has at least one associated curve. With each
γ ∈ C, we associate the variety

Vγ := Cl
(
V ∩ (C2 × γ∗r × γr × γr)

)
⊂ C8,

where γ∗ is any curve associated to γ, and γ∗r , γr denote the subsets of regular points of
γ∗, γ, respectively. It easily follows from the definition of V that, for most regular points
(z1, z2), (z3, z4) ∈ γr and for most regular points (y, y′) ∈ γ∗, there exist x, x′ ∈ C such that
(x, x′, y, y′, z1, z2, z3, z4) ∈ Vγ . We have the following key property.

I Lemma 3.6. For all γ ∈ C we have Vγ ⊂W ∪ V0.

Proof. It is sufficient to show that

V ′γ := V ∩ (C2 × γ∗r × γr × γr) ⊂W ∪ V0.

For this, let v ∈ V ′γ\V0. Then Lemma 3.3 gives an open neighborhood Nv of v, disjoint from
V0, so that V ∩Nv is the graph of an analytic map Φv : B1 → B2, where B1 := π1(Nv) and
B2 := π2(Nv).
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Assume, for contradiction, that v 6∈W . Then Lemma 3.4 gives det(JΦv (π1(v))) 6= 0. By
the inverse mapping theorem (see [5]), Φv is bianalytic on a sufficiently small neighborhood
of π1(v), which, by shrinking Nv if needed, we may assume to be B1.

Consider the mapping Φv := Φv ◦ π1 restricted to V ∩Nv. Note that Φv is bianalytic.
Indeed, π1 restricted to V ∩Nv is clearly bianalytic (its inverse is u 7→ (u,Φv(u))), so Φv is
the composition of two bianalytic functions, hence itself bianalytic. By definition of Vγ we
have Φv(Vγ ∩Nv) ⊂ γ × γ.

Write v = (a, a′, b, b′, c1, c2, c3, c4), and note that, by the definition of V ′γ , (c1, c2), (c3, c4)
are regular points of γ and (b, b′) is a regular point of γ∗. We claim that there exists an open
N ⊂ Nv such that Vγ ∩ N is locally three-dimensional. Indeed, we may assume, without
loss of generality, that none of the tangents to γ at (c1, c2), (c3, c4), and to γ∗ at (b, b′) are
vertical in the respective planes (otherwise, we simply switch the roles of the first and the
second coordinate in the relevant copy of C2). Applying the implicit function theorem (see
[5]) to γ and γ∗ at these regular points, we may therefore write z2 = ρ1(z1), z4 = ρ2(z3), and
y′ = ρ3(y) in sufficiently small neighborhoods of (b, b′), (c1, c2), (c3, c4), along the respective
curves, for analytic functions ρ1, ρ2, ρ3. Similarly, applying the implicit function theorem
to Z(F ) in sufficiently small neighborhoods of (a, b, c1), (a′, b, c3) (which we may, since we
are away from V0), we may write x = σ1(y, z1), x′ = σ2(y, z3), for analytic functions σ1, σ2.
Combining the functions above, we obtain an open neighborhood N of v such that the map

(y, z1, z3) 7→ (σ1(y, z1), σ2(y, z3), y, ρ3(y), z1, ρ1(z1), z3, ρ2(z3))

is bianalytic from an open neighborhood of (b, c1, c3) to Vγ ∩N . This implies that Vγ ∩N is
locally three-dimensional. Since γ × γ has local dimension 2 at every pair of regular points,
and Φv preserves local dimension, since it is bianalytic, this yields a contradiction, which
completes the proof of the lemma. J

I Lemma 3.7. If γ ∈ C is not an axis-parallel line, then Cl(π1(Vγ)) = C2 × γ∗.

Proof. We clearly have π1(Vγ) ⊂ π1(C2 × γ∗ × γ × γ) = C2 × γ∗, so, since C2 × γ∗ is a
variety, we get Cl(π1(Vγ)) ⊂ C2 × γ∗.

By definition, there is a finite subset S ⊂ γ∗ such that, for all (b, b′) ∈ γ∗\S, γ ⊂ γb,b′ ; fix
such a point (b, b′) which is also a regular point of γ∗. Then, by definition of V , it is easily
checked that

π1(Vγ) ∩ Z(y − b, y′ − b′) ⊃ βb,b′ × βb,b′ × {(b, b′)},

where βb,b′ := {x ∈ C | ∃(c1, c2) ∈ γr such that F (x, b, c1) = F (x, b′, c2) = 0}. Since γ is not
a line parallel to any of the axes,1 one can show (details in the full version) that Cl(βb,b′) = C.
Hence

Cl(π1(Vγ)) ⊃ Cl
( ⋃

(b,b′)∈γ∗r \S

βb,b′ × βb,b′ × {(b, b′)}
)
⊃

⋃
(b,b′)∈γ∗r \S

Cl
(
βb,b′ × βb,b′ × {(b, b′)}

)
= C2 × Cl

( ⋃
(b,b′)∈γ∗r \S

{(b, b′)}
)

= C2 × Cl
(
γ∗r\S

)
= C2 × γ∗,

using that the closure of an infinite union contains the union of the closures, and that the
closure of a product is the product of the closures. This completes the proof of the lemma. J

1 If γ were such a line, one of the equations, say F (x, b, c1) = 0 would have a fixed value of c1, and only
Od(1) values of x.
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3.4 The associated curves
In this section we show that if a curve γ is popular, then it has at least one associated curve,
of the sort defined in Definition 3.5. First we need the following sharpened form of Bézout’s
inequality for many curves. A proof can be found in Tao [15].

I Lemma 3.8 (Bézout for many curves). If F is a (possibly infinite) family of algebraic curves
in C2, each of degree at most δ, then deg

(⋂
C∈F C

)
≤ δ2. In other words, either

⋂
C∈F C is

0-dimensional and has cardinality at most δ2, or it has dimension 1 and degree at most δ2.

Recall that C is the set of popular curves, i.e., irreducible curves γ that are contained in
γy,y′ for more than d4 points (y, y′) ∈ C2\S (where S is the set constructed in Section 2).
Lemma 3.9 strengthens this property, by showing that if γ is popular, then there is a
1-dimensional set of curves γy,y′ that contain γ.

I Lemma 3.9. Every γ ∈ C has at least one associated curve. More precisely, for every
γ ∈ C there exists an algebraic curve γ∗ ⊂ C2 of degree at most d2 such that for all but
finitely many (y, y′) ∈ γ∗ we have γ ⊂ γy,y′ .

Proof. By definition of C, if γ ∈ C, then there exists a set I ⊂ C2\S of size |I| = d4 + 1 such
that γ ⊂ γy,y′ for all (y, y′) ∈ I. This means that for all (y, y′) ∈ I and for all but finitely
many (z, z′) ∈ γ, there is an x ∈ C such that F (x, y, z) = F (x, y′, z′) = 0, which implies that
(y, y′) ∈ γ∗z,z′ . Thus we have I ⊂ γ∗z,z′ for all but finitely many (z, z′) ∈ γ.

Let F be the infinite family of curves γ∗z,z′ over all (z, z′) ∈ γ satisfying I ⊂ γ∗z,z′ , and
define SI :=

⋂
γ∗

z,z′
∈F γ

∗
z,z′ . Then we have I ⊂ SI . Since all the curves in F have degree at

most d2, Lemma 3.8 implies that SI has degree at most d4. Since |I| > d4, SI must have
dimension 1. Let γ∗ be any irreducible component of SI .

If (y, y′) ∈ γ∗, then for all but finitely many (z, z′) ∈ γ we have (y, y′) ∈ γ∗z,z′ . It follows
that for all but finitely many (y, y′) ∈ γ∗, and for all but finitely many (z, z′) ∈ γ (where the
excluded points (z, z′) depend on the choice of (y, y′)), we have (z, z′) ∈ γy,y′ . Since both
γ and γy,y′ are algebraic curves, and γ is irreducible, we have γ ⊂ γy,y′ for all but finitely
many (y, y′) ∈ γ∗. This means γ∗ is an associated curve of γ. J

3.5 Case 1: dim Cl(π1(W )) ≤ 3 implies few popular curves
Throughout this subsection we assume that dim Cl(π1(W )) ≤ 3, and establish the existence
of the set X in Proposition 2.3(a).

As the statement of Lemma 3.7 suggests, popular curves that are axis-parallel lines require
a different treatment, provided by the following simple lemma, whose proof we omit.

I Lemma 3.10. There is a 1-dimensional variety X1 ⊂ C2 with deg(X1) = O(d2) containing
S, such that, for every (y1, y2) ∈ C2\X1, the curve γy1,y2 contains no axis-parallel line.

We also need the following observation.

I Lemma 3.11. An irreducible curve γ∗ is associated to at most d2 curves γ ∈ C.

Proof. Suppose there is a set C′ of d2 + 1 distinct curves γ ∈ C that γ∗ is associated to.
For each γ ∈ C′, we have that, for all but finitely many (y, y′) ∈ γ∗, γ is contained in γy,y′ .
It follows that there is a point (y, y′) ∈ γ∗ such that γ ⊂ γy,y′ for all γ ∈ C′. This is a
contradiction, because γy,y′ has at most d2 irreducible components. J

We are now ready to prove the key fact that the number of popular curves is bounded.
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I Lemma 3.12. There are O(d7) distinct popular curves γ ∈ C that are not axis-parallel lines,
and there are O(d5) distinct associated curves of popular curves that are not axis-parallel
lines.

Proof. Let γ ∈ C, assume that it is not an axis-parallel line, and let γ∗ be an associated
curve of γ. Since γ∗ is irreducible, C2 × γ∗ is an irreducible variety. Using Lemma 3.7 and
Lemma 3.6, we have

C2 × γ∗ = Cl(π1(Vγ)) ⊂ Cl(π1(W ∪ V0)) = X ∪ Y,

for X := Cl(π1(W )) and Y := Cl(π1(V0)). We have dim(X) ≤ 3 by the assumption
in this subsection, and dim(Y ) ≤ 3 by Lemma 3.2. We also have deg(X) = O(d5) and
deg(Y ) = O(d5), since both are unions of closures of projections of varieties defined by five
polynomials, each of degree at most O(d). Since X ∪ Y is at most 3-dimensional, and each
C2 × γ∗ is an irreducible 3-dimensional subvariety of X ∪ Y , it follows that C2 × γ∗ is one of
the finitely many irreducible components of X ∪ Y .

Let T be the set of all associated curves of all curves γ ∈ C (excluding γ that are
axis-parallel lines). The preceding argument shows that T is a finite set. Moreover, we have∑

γ∗∈T
deg(γ∗) =

∑
γ∗∈T

deg(C2 × γ∗) ≤ deg(X ∪ Y ) = O(d5).

This implies that the total number of distinct associated curves is O(d5). Since by Lemma
3.9 each popular curve has at least one associated curve, and by Lemma 3.11 each associated
curve is associated to at most d2 popular curves, it follows that the number of popular curves
is bounded by O(d7). J

Finally, we show that the union of all the associated curves (which are not axis-parallel
lines) has bounded degree.

I Lemma 3.13. Let X2 := Cl({(y, y′) ∈ C2 | ∃γ ∈ C, not axis-parallel line, s.t. γ ⊂ γy,y′}).
Then X2 is 1-dimensional; its purely 1-dimensional component has degree O(d7), and the
number of 0-dimensional components is O(d11).

Proof. Any 1-dimensional irreducible component of X2 is an associated curve. By Lemma
3.12, there are O(d5) associated curves γ∗, and by Lemma 3.9 each is of degree at most
O(d2). This implies that union of the purely 1-dimensional components of X2 has degree
O(d7).

We next bound the number of 0-dimensional components of X2. By Lemmas 3.11 and
3.12, the number of popular curves γ ∈ C is at most O(d7). We show that, for each of them,
the number of isolated points outside the associated curves is at most d4. Let γ ∈ C and let
I ⊂ C2\S denote the set consisting of isolated points, such that γ ⊂ γy,y′ for all (y, y′) ∈ I.
Exactly as in the proof of Lemma 3.9, there is a set SI , which is the intersection of an infinite
family of curves γ∗z,z′ containing I. Thus we have I ⊂ SI . By Lemma 3.8, SI has degree at
most d4, and therefore contains at most d4 isolated points. J

We put X := X1 ∪ X2. Combining Lemma 3.10 and Lemma 3.13, we get dim(X ) = 1 and
deg(X ) = O(d11). From the definitions of X1 and X2 it is clear that for (y, y′) 6∈ X , the curve
γy,y′ does not contain any popular curve. This completes the proof of Proposition 2.3(a) in
Case 1. Proposition 2.3(b) is proved in a fully symmetric manner.
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3.6 Case 2: dim Cl(π1(W )) = 4 implies a special form of F
Throughout this subsection we assume that dim Cl(π1(W )) = 4. By definition, W ⊂ V , and
we already know that dimV = 4, so W must be four-dimensional too, which implies that
there exists an irreducible component V ′ ⊂W such that dimV ′ = 4 and Cl(π1(V ′)) = C4.
We will work only with V ′ in the rest of this subsection. We first show that most points of
Z(F ), excluding only a lower-dimensional subset, can be extended to points of V ′, in the
following sense.

I Lemma 3.14. There exists a one-dimensional subvariety Z0 ⊂ Z(F ) such that, for every
(a, b, c1) ∈ Z(F )\Z0, there exist a′, b′, c2, c3, c4 such that (a, a′, b, b′, c1, c2, c3, c4) is a regular
point of V ′ which is not in V0.

Proof. Let ρ : C8 → C6 be the (permuted) projection map ρ : (x, x′, y, y′, z1, z2, z3, z4) 7→
(x, y, z1, x

′, y′, z4). We claim that Cl(ρ(V ′)) = Z(F ) × Z(F ). Since Z(F ) × Z(F ) is four-
dimensional and irreducible, and since, by definition of V , ρ(V ′) ⊂ Z(F )× Z(F ), it suffices
to prove that Cl(ρ(V ′)) is four-dimensional. We observe that σ(ρ(V ′)) = π1(V ′), where
σ : (x, y, z1, x

′, y′, z4) 7→ (x, x′, y, y′). Because projections cannot increase dimension, we have
dim Cl(ρ(V ′)) ≥ dim Cl(π1(V ′)) = 4, proving our claim.

By the standard properties of the closure operation, U1 := Cl
(
(Z(F )× Z(F ))\ρ(V ′)

)
=

Cl
(
Cl(ρ(V ′))\ρ(V ′)

)
is at most three-dimensional, and U2 := Cl(ρ(V0 ∩ V ′)) is clearly also

at most three-dimensional. Since V ′ is irreducible, the subvariety V ′s of singular points of V ′
is at most three-dimensional, so U3 := Cl(ρ(V ′s )) is also at most three-dimensional. Hence,
U := U1 ∪ U2 ∪ U3 is a variety in C6 of dimension at most 3. We set

Z ′0 : = {p ∈ Z(F ) | dim (({p} × Z(F )) ∩ U) ≥ 2} .

In other words (using the fact that {p} × Z(F ) is irreducible), p ∈ Z ′0 if and only if
{p} × Z(F ) ⊂ U , so Z ′0 × Z(F ) ⊂ U . Since U is a variety, we have Cl(Z ′0) × Z(F ) =
Cl(Z ′0 × Z(F )) ⊂ U . Since U is at most three-dimensional and Z(F ) is two-dimensional, we
must have that, for Z0 := Cl(Z ′0), dimZ0 ≤ 1.

Finally, let (a, b, c1) ∈ Z(F )\Z0. By definition of Z0, we have

dim (({(a, b, c1)} × Z(F )) ∩ U) ≤ 1.

Thus there exists a point (a, b, c1, a′, b′, c4) ∈ (Z(F ) × Z(F ))\U . By definition of U , this
implies that (a, b, c1, a′, b′, c4) ∈ ρ(V ′)\U , which in turn means that there exist c2, c3 ∈ C
such that (a, a′, b, b′, c1, c2, c3, c4) ∈ V ′\V0 is a regular point of V ′, as asserted. J

Let Z0 be the variety given by Lemma 3.14.

I Lemma 3.15. Let u = (a, b, c1) ∈ Z(F )\Z0. Then there exist open sets Di ⊂ C and
analytic functions ϕi : Di → C, for i = 1, 2, 3, such that (a, b, c1) ∈ D1 ×D2 ×D3 and

(x, y, z) ∈ Z(F ) if and only if ϕ1(x) + ϕ2(y) + ϕ3(z) = 0,

for every (x, y, z) ∈ D1 ×D2 ×D3.

Proof. By applying Lemma 3.14 to u = (a, b, c1), we obtain a′, b′, c2, c3, c4 ∈ C, such that
v := (a, a′, b, b′, c1, c2, c3, c4) ∈ V ′\V0 is a regular point of V ′. By Lemma 3.3, there exist
neighborhoods D1 of a, D2 of a′, E1 of b, and E2 of b′, and a mapping

Φv : (x, x′, y, y′) 7→
(
g1(x, y), g2(x, y′), g3(x′, y), g4(x′, y′)

)
,
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analytic over D1×D2×E1×E2, such that its graph is the intersection V ∩Nv, for some open
neighborhood Nv of v in C8 (whose π1-projection is D1 ×D2 ×E1 ×E2). Note that, since
v is a regular point of V ′, V ′ ∩Nv is necessarily four-dimensional, and so it must coincide
with V ∩Nv. Thus, restricting the analysis to the neighborhood Nv, we may use V and V ′
interchangeably in what follows.

Since V ′ ⊂W , we have, recalling the definition of the variety W , that

G(x, x′, y, y′, z1, z2, z3, z4) = 0,

for every (x, x′, y, y′, z1, z2, z3, z4) ∈ V ′ ∩Nv. By the implicit function theorem, the functions
g1, . . . , g4 satisfy, in a suitable neighborhood of v, g1i(x, y) = − Fi(x,y,g1(x,y))

F3(x,y,g1(x,y)) , and similarly
for g2, g3, g4. By the definition of G, this is easily seen to imply that

g11(x, y)g22(x, y′)g32(x′, y)g41(x′, y′) = g12(x, y)g21(x, y′)g31(x′, y)g42(x′, y′),

for every (x, x′, y, y′) ∈ D1 ×D2 × E1 × E2. In particular, fixing x′ = a′ and y′ = b′, there
exists an open neighborhood D1 ×D2 of (a, b) ∈ C2, such that, for every (x, y) ∈ D1 ×D2,

g11(x, y)g22(x, b′)g32(a′, y)g41(a′, b′) = g12(x, y)g21(x, b′)g31(a′, y)g42(a′, b′). (3)

Because v 6∈ V0, we have g11(a, b) = −F1(a,b,c1)
F3(a,b,c1) 6= 0. Similarly, g22(a, b′), g32(a′, b),

g41(a′, b′), g12(a, b), g21(a, b′), g31(a′, b), and g42(a′, b′) are all nonzero. The continuity of all
the relevant functions implies that, by shrinking D1 ×D2 if needed, we may assume that
neither side of (3) is zero for any (x, y) ∈ D1 ×D2. Thus we can rewrite (3) as

g11(x, y)
p(x) = g12(x, y)

q(y) , (4)

where p(x) = g21(x, b′)g42(a′, b′)/g22(x, b′) is analytic and nonzero on D1 and q(y) =
g32(a′, y)g41(a′, b′)/g31(a′, y) is analytic and nonzero on D2. By Lang [7, Theorem III.6.1],
there exist analytic primitives ϕ1, ϕ2 so that ϕ′1(x) = p(x) on D1 and ϕ′2(y) = q(y) on D2.

We express the function g1(x, y) in terms of new coordinates (ξ, η), given by

ξ = ϕ1(x) + ϕ2(y), η = ϕ1(x)− ϕ2(y). (5)

Since p, q are continuous and nonzero at a, b, respectively, it follows that ϕ1, ϕ2 are injections
in suitable respective neighborhoods of a, b, so by shrinking D1 and D2 still further, if needed,
we may assume that the system (5) is invertible in D1 ×D2.

Returning to the standard notation, denoting partial derivatives by variable subscripts,
we have ξx = ϕ′1(x), ξy = ϕ′2(y), ηx = ϕ′1(x), and ηy = −ϕ′2(y). Using the chain rule, we
obtain

g11 = g1ξξx + g1ηηx = ϕ′1(x)(g1ξ + g1η) = p(x)(g1ξ + g1η)

g12 = g1ξξy + g1ηηy = ϕ′2(y)(g1ξ − g1η) = q(y)(g1ξ − g1η),

which gives g11(x, y)
p(x) − g12(x, y)

q(y) ≡ 2g1η(x, y), on D1 × D2. Combining this with (4), we

get g1η(x, y) ≡ 0. This means that g1 depends only on the variable ξ, so it has the form
g1(x, y) = ψ(ϕ1(x)+ϕ2(y)), for a suitable analytic function ψ. The analyticity of ψ is an easy
consequence of the analyticity of ϕ1, ϕ2, and g1, and the fact that ϕ′1(x) and ϕ′2(y) are nonzero,
combined with repeated applications of the chain rule. Let E := {ϕ1(x) + ϕ2(y) | (x, y) ∈
D1×D2} and D3 := {ψ(z) | z ∈ E}. We observe that g11(x, y) = ψ′(ϕ1(x)+ϕ2(y)) ·p(x). As
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argued above, we have g11(x, y) 6= 0 for all (x, y) ∈ D1×D2, implying that ψ′(ϕ1(x) +ϕ2(y))
is nonzero for (x, y) ∈ D1 ×D2. Therefore, ψ : E → D3 is invertible by the inverse mapping
theorem (see [5]).

Letting ϕ3(z) := −ψ−1(z), we get for (x, y, z) ∈ D1×D2×D3 that ϕ1(x)+ϕ2(y)+ϕ3(z) =
0 if and only if (x, y, z) ∈ Z(F )∩ (D1×D2×D3). This completes the proof of the lemma. J

Finally, Lemma 3.15 has established that F satisfies property (ii) of the theorem, which
completes the proof of Proposition 2.3 for this case. J
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