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—— Abstract

In the semantics of programming languages one can view programs as state transformers, or
as predicate transformers. Recently the author has introduced ‘state-and-effect’ triangles which

captures this situation categorically, involving an adjunction between state- and predicate-trans-
formers. The current paper exploits a classical result in category theory, part of Jon Beck’s
monadicity theorem, to systematically construct such a state-and-effect triangle from an adjunc-
tion. The power of this construction is illustrated in many examples, both for the Boolean and
probabilistic (quantitative) case.
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1 Introduction

In program semantics three approaches can be distinguished.
Interpreting programs themselves as morphisms in certain categories. Composition in
the category then corresponds to sequential composition. Parallel composition may be
modeled via tensors ®. Since [26] the categories involved are often Kleisli categories K¥(T')
of a monad T', where the monad T captures a specific form of computation: deterministic,
non-deterministic, probabilistic, etc.
Interpreting programs via their actions on states, as state transformers. For instance,
in probabilistic programming the states may be probabilistic distributions over certain
valuations (mapping variables to values). Execution of a program changes the state, by
adapting the probabilities of valuations. The state spaces often have algebraic structure,
and take the form of Eilenberg-Moore categories EM(T) of a monad T
Interpreting programs via their actions on predicates, as predicate transformers. The
predicates involved describe what holds (is true) at a specific point. Execution of a
program may then adapt the validity of predicates. A particular form of semantics of
this sort is weakest precondition computation [6]. In the context of (coalgebraic) modal
logic, these predicate transformers appear as modal operators.

A systematic picture of these three approaches has emerged in categorical language, using
triangles of the form described below, see [15], and also [13, 14].

Schrodinger

op _ predicate - - state
Log®” _( transformers ) ;/ transformers (1)
(computations)
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The three nodes in this diagram represent categories of which only the morphisms are
described. The arrows between these nodes are functors, where the two arrows = at the
top form an adjunction. The two triangles involved should commute. In the case where two
up-going ‘predicate’ and ‘state’ functors Pred and Stat in (1) are full and faithful, we have
three equivalent ways of describing computations. On morphisms, the predicate functor yields
what is called substitution in categorical logic, but what amounts to a weakest precondition
operation in program semantics, or a modal operator in programming logic. The upper

category on the left is of the form Log®®?, where Log is some category of logical structures.

The opposite category (—)°P is needed because predicate transformers operate in the reverse
direction, taking a postcondition to a precondition.

In a setting of quantum computation this translation back-and-forth = in (1) is associated
with the different approaches of Heisenberg (logic-based, working backwards) and Schrodinger
(state-based, working forwards), see e.g. [12]. In quantum foundations one speaks of the
duality between states and effects (predicates). Since the above triangles first emerged in
the context of semantics of quantum computation [14], they are sometimes referred to as
‘state-and-effect’ triangles.

In certain cases the adjunction = in (1) forms — or may be restricted to — an equivalence
of categories, yielding a duality situation. It shows the importance of duality theory in
program semantics and logic; this topic has a long history, going back to [1].

In [14] it is shown that in the presence of relatively weak structure in a category B, a
diagram of the form (1) can be formed, with B as base category of computations, with
predicates forming effect modules (see below) and with states forming convex sets. A category
with this relatively weak structure is now called an effectus, see [20].

The main contribution of this paper is a “new” way of generating state-and-effect triangles,
namely from adjunctions. We write the word ‘new’ between quotes, because the underlying
category theory uses a famous of result of Jon Beck, and is not new at all. What the paper
contributes is mainly a new perspective: it reorganises the work of Beck in such a way that an
appropriate triangle appears, see Section 2. The rest of the paper is devoted to illustrations
of this recipe for triangles. These examples are either of a Boolean or a probabilistic nature,
see Sections 3 and 4 respectively. The Boolean examples are all obtained from an adjunction
using “homming into {0, 1}”, whereas the probabilistic (quantitative) examples all arise from
“homming into [0, 1]”, where [0, 1] is the unit interval of probabilities.

The series of examples in this paper involves many mathematical structures, ranging from
Boolean algebras to compact Hausdorff spaces and C*-algebras. It is impossible to explain
all these notions in detail here. Hence the reader is assumed to be reasonably familiar with
these structures. It does not matter so much if some of the examples involve unfamiliar
mathematical notions. The structure of these sections 3 and 4 is clear enough, and it does
not matter if some of the examples are skipped.

An exception is made for the notions of effect algebra and effect module. They are
explicitly explained (briefly) in the beginning of Section 4 because they play such a prominent
role in quantitative logic.

The examples involve many adjunctions that are known in the literature. Here they are
displayed in triangle form. In several cases monads arise that are familiar in coalgebraic
research, like the neighbourhood monad N in Subsection 3.1, the monotone neighbourhood
monad M in Subsection 3.2, the infinite distribution monad D, in Subsection 4.4, and the
Giry monad G in Subsection 4.5. Also we will see several examples where we have pushed
the recipe to a limit, and where the monad involved is simply the identity.
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2 A basic result about monads

We assume that the reader is familiar with the categorical concept of a monad T', and with
its double role, describing a form of computation, via the associated Kleisli category K¢(T),
and describing algebraic structure, via the category EM(T) of Eilenberg-Moore algebras.

The following result is a basic part of the theory of monads, see e.g. [3, Prop. 3.15 and
Exercise (KEM)] or [22, Prop. 6.5 and 6.7] or [2, Thm. 20.42], and describes the initiality
and finality of the Kleisli category and Eilenberg-Moore category as ‘adjunction resolutions’
giving rise to a monad.

» Theorem 1. Consider an adjunction F - G with induced monad T'= GF. Then there are
‘comparison’ functors KL(T) — A — EM(T) in a diagram:

A7
e
B

F

=G

L
\
T

where the functor L: KU(T) — A is full and faithful.
In case the category A has coequalisers (of reflexive pairs), then K has a left adjoint M,
as indicated via the dotted arrow, satisfying MKL = L.

KU(T) { EM(T)

The famous monadicity theorem of Jon Beck gives conditions that guarantee that the
functor K: A — EM(T) is an equivalence of categories, so that objects of A are algebras.
The existence of the left adjoint M is the part of this theorem that we use in the current
setting. Other (unused) parts of Beck’s theorem require that the functor G preserves and
reflects coequalisers of reflexive pairs. For convenience we include a proof sketch.

Proof. Define L(X) = F(X) and L(X ER GF(Y)) =epy) o F(f): F(X) — F(Y). This
functor L is full and faithful because there is a bijective adjoint correspondence:
F(X)——=F(Y)
X—>GFY)=T(Y)

The functor K: A — EM(T) is defined as:

GFG(A) ;
K(A) = < lG(E“)) and K(A=B) = G(f).
G(4)
We leave it to the reader to see that K is well-defined. For a Kleisli map f: X — T(Y') the
map KL(f) is Kleisli extension:

KL(f) = Glerm) o F(f) = py oT(f): T(X) — T(Y).

Assume that the category A has coequalisers. For an algebra a: T(X) — X let M (X, a)
be the (codomain of the) coequaliser in:

F(a)
FGF(X)—_— 23 F(X)—» M(X,a)

EF(X)
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It is not hard to see that there is a bijective correspondence:

M(X,a) 14 in A
T(X) TG(A)
( \La > T) ( J{G(EA)) = K(A) in EM(T)
X G(A)

What remains is to show M KL = L. This follows because for each X € B, the following
diagram is a coequaliser in A.

F(ux)=FG(ep(x))

FGFGF(X)—_—___—  —(tFGF(X)

EFGF(X)

EF(X)

F(X)

Hence the codomain MK L(X) of the coequaliser of FKL(X) = FG(ep(x)) and the counit
map €pgp(x) is isomorphic to F(X) = L(X). Proving naturality of M KL = L (wrt. Kleisli
maps) is a bit of work, but is essentially straightforward. <

An essential ‘aha moment’ underlying this paper is that the above result can be massaged
into triangle form. This is what happens in the next result, to which we will refer as the
‘triangle corollary’. It is the ‘recipe’ that occurs in the title of this paper.

» Corollary 2. Consider an adjunction F' 4 G, where F' is a functor B — A, the category
A has coequalisers, and the induced monad on B is written as T = GF. Diagram (2) then
gives rise to a triangle as below, where both up-going functors are full and faithful.

K
A7 T EM(T)

NI .
Pred=L K L=Stat

Ki(T)

This triangle commutes, trivially from left to right, and up-to-isomorphism from right to left,
since MKL = L. In this context we refer to the functor L as the ‘predicate’ functor Pred,
and to the functor KL as the ‘states’ functor Stat.

The remainder of the paper is devoted to instances of this triangle corollary. In each
of these examples the category A will be of the form P°P, where P is a category of
predicates (with equalisers). The full and faithfulness of the functors Pred: K¥(T") — P°P
and Stat: KI(T) — EM(T) means that there are bijective correspondences between:

computations computations

X Computations, iy X ComPutations, iy
Pred(X) Stat(X)

(4)

Pred(Y) Stat(Y)

predicate transformers state transformers

Since Stat(X) = T'(X), the correspondence on the right is given by Kleisli extension, sending
amap f: X - T(Y)topuoT(f): T(X) — T(Y). This bijective correspondence on the right
is a categorical formality. But the correspondence on the left is much more interesting, since
it precisely describes to which kind of predicate transformers (preserving which structure)
computations correspond. This will be illustrated below.

Aside: as discussed in [14], the predicate functor Pred: K¥(T) — A is in some cases an
enriched functor, preserving additional structure that is of semantical/logical relevance. For
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instance, operations on programs, like U for non-deterministic sum, may be expressed as
structure on Kleisli homsets. Preservation of this structure by the functor Pred gives the
logical rules for dealing with such structure in weakest precondition computations. These
enriched aspects will not be elaborated in the current context.

3 Boolean examples

We split our series of examples in two parts, namely into Boolean and probabilistic examples.
The Boolean ones are obtained via adjunctions that involve ‘homming into 2’; where 2 = {0, 1}
is the 2-element set of Booleans. The probabilistic (aka. quantitative) examples in the next
section are obtained via ‘homming into [0,1]’, where [0,1] C R is the unit interval of
probabilities.

3.1 Sets and sets

We will present examples in the following manner, in three stages.

Sets®? Sets®P
P(X) ==Y o T * =
P=Hom(—,2) (" )P:Hom(f,Z) % Sets ;I—/ SM(N) = CABA
Sets Y m P(X) plk A\tat
@) X ——=7P(Y) KE(N)
N=PP Sets

On the left we describe the adjunction that forms the basis for the example at hand, together
with the induced monad. In this case we have the familiar fact that the powerset functor P
is adjoint to itself, as indicated. The induced double-powerset monad PP is known in the
coalgebra/modal logic community as the neighbourhood monad N, because its coalgebras
are related to neighbourhood frames in modal logic.

In the middle the bijective correspondence is described that forms the basis of the
adjunction. In this case there is the obvious correspondence between functions ¥ — P(X)
and functions X — P(Y") — which are all relations on X x Y.

On the right the result is shown of applying the triangle corollary 2 to the adjunction
on the left. The full and faithfulness of the predicate functor Pred: K¢(N) — Sets®? plays
an important role in the approach to coalgebraic dynamic logic in [11], relating coalgebras
X — N(X) to predicate transformer functions P(X) — P(X), going in the opposite
direction. The category EM(N) of Eilenberg-Moore algebras of the neighbourhood monad A
is the category CABA of complete atomic Boolean algebras (see e.g. [28]). The adjunction
Sets®® = EM(N) is thus an equivalence.

3.2 Sets and posets

We now restrict the adjunction in the previous subsection to posets.

PoSets? —_—
P=Hom(—,2) (4 QUp:Hom(—Q) y PoSets P(X) PoSets°? T EM (M): CDL
Sets X — Up(Y) Pred A‘at
@) Sets KE(M)
M=UpP

The functor Up: PoSets®® — Sets sends a poset Y to the collection of upsets U C Y,
satisfying y > x € U implies y € U. These upsets can be identified with monotone maps
p: Y — 2 namely as p~1(1).
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Notice that this time there is a bijective correspondence between computations X —
M(Y) = UpP(Y) and monotone predicate transformers P(Y) — P(X). This fact is used
n [11]. The algebras of the monad M are completely distributive lattices, see [24] and [21, I,
Prop. 3.8].

3.3 Sets and meet-semilattices

We now restrict the adjunction further to meet semilattices, that is, to posets with finite
meets A, T.

MSL°P .
op _
P—Hom(—,2) ( 4 ) Hom(-2) y MSL, 5 ) MSL T ~EM(F)= CCL
Set /
ets X — MSL(Y, 2) Pred Stat
U Sets ’@(JT_')

F=MSL(P(-),2)

Morphisms in the category MSL of meet semilattices preserve the meet A and the top
element T (and hence the order too). For Y € MSL one can identify a map Y — 2 with a
filter of Y, that is, with an upset U C Y closed under A, T.

The resulting monad F(X) = MSL(P(X),2) gives the filters in P(X). This monad is
thus called the filter monad. In [29] it is shown that its category of algebras EM(F) is the
category CCL of continuous complete lattices, that is, of complete lattices in which each
element x is the (directed) join z = \/{y | y < 2z} of the elements way below it.

3.4 Sets and Boolean algebras

We further restrict the adjunction to the category BA of Boolean algebras.

BA® op /_N
P=Hom(— (\—{ )Hom BA SM ) CH
Stat

y B2, p(X)
Sets P k /
() X 5o BAY2) a

U=BA(P(—),2)

The functor Hom(—,2): BA®® — Sets sends a Boolean algebra Y to the set BA(Y,2) of
Boolean algebra maps Y — 2. They can be identified with ultrafilters of Y. The resulting
monad U = BA(P(—),2) is the ultrafilter monad, sending a set X to the BA-maps P(X) — 2,
or equivalently, the ultrafilters of P(X).

An important result of Manes (see [23], and also [21, III, 2.4]) says that the category
of Eilenberg-Moore algebras of the ultrafilter monad U is the category CH of compact
Hausdorff spaces. This adjunction BA°? = CH restricts to an equivalence BA°P? ~ Stone
called Stone duality, where Stone — CH is the full subcategory of Stone spaces — in which
each open subset is the union of the clopens contained in it.

3.5 Sets and complete Boolean algebras

We can restrict the adjunction BA°P 2 Sets from the previous subsection to an adjunction
CBA°P 2 Sets between complete Boolean algebras and sets. The resulting monad on Sets

is of the form X — CBA(P(X),2). But here we hit a wall, since this monad is the identity.

» Lemma 3. For each set X the unit map n: X — CBA(P(X),2), given by n(x)(U) =1
iff ¢ € U, is an isomorphism.
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Proof. Let h: P(X) — 2 be a map of complete Boolean algebras, preserving the BA-structure
and all joins (unions). Since each subset U € P(X) can be described as union of singletons, the
function h is determined by its values h({z}) for x € X. We have 1 = h(X) = U, x h({z}).
Hence h({z}) =1 for some z € X. But then h(X — {z}) = h(—{z}) = =h({z}) = -1 =0.
This implies h({z’'}) = 0 for each 2’ # . But then h = n(z). <

4 Probabilistic examples

The next series of examples starts from adjunctions that are obtained by homming into
the unit interval [0,1]. The quantitative logic that belongs to these examples is given in
terms of effect modules. These can be seen as “probabilistic vector spaces”, involving scalar
multiplication with scalars from the unit interval [0, 1], instead of from R or C. We provide
a crash course for these structures, and refer to [17, 15] or [7] for more information.

A partial commutative monoid (PCM) consists of a set M with a partial binary operation
© and a zero element 0 € M. The operation @ is commutative and associative, in an
appropriate partial sense. One writes z | y if x @ y is defined.

An effect algebra is a PCM with an orthocomplement (—)*, so that z @ 2+ = 1, where
1=0%, and 2 L 1 implies 2 = 0. An effect algebra is automatically a poset, via the definition
x <y iff x @ z =y for some z. The main example is the unit interval [0, 1], with = L y iff
x+y <1, and in that case © @ y = x + y; the orthocomplement is - =1 — z. A map of
effect algebras f: E — D is a function that preserves 1 and @, if defined. We write EA for
the resulting category. Each Boolean algebra is an effect algebra, with x 1 y iff x Ay =0,
and in that case © @ y = x V y. This yields a functor BA — EA, which is full and faithful.

An effect module is an effect algebra E with an action [0, 1] X E — E that preserves @, 0 in
each argument separately. A map of effect modules f is a map of effect algebras that preserves
scalar multiplication: f(r-x)=r- f(x). We thus get a subcategory EMod — EA. For each
set X, the set [0, 1]X of fuzzy predicates on X is an effect module, with p L ¢ iff p(x)+q(x) < 1
for all x € X, and in that case (p @ q)(z) = p(z) + ¢(z). Orthocomplement is given by
pt(z) =1 — p(z) and scalar multiplication by r - p € [0,1]%, for r € [0,1] and p € [0, 1],
by (r-p)(x) = r - p(z). This assignment X + [0,1]% yields a functor Sets — EMod°?
that will be used below. Important examples of effect modules arise in quantum logic.
For instance, for each Hilbert space H, the set Ef(H) = {A: H — H | 0 < A < id} of
effects is an effect module. More generally, for a (unital) C*-algebra A, the set of effects
[0,1]4 ={a € A]|0<a<1}is an effect module. In [8] it is shown that taking effects yields
a full and faithful functor:

0,1](~
Cstarpy % EMod (5)

Here we write Cstarpy for the category of C*-algebras with positive unital maps.

An MV-algebra [5] can be understood as a ‘commutative’ effect algebra. It is an effect
algebra with a join Vv, and thus also a meet A, via De Morgan, in which the equation
(xVy)t @z =yt @ (x Ay) holds. There is a subcategory MVA < EA with maps
additionally preserving joins V (and hence also A). Within an MV-algebra one can define
(total) addition and subtraction operations as z +y =2 @ (z- Ay) and z —y = (z+ + y)*.
The unit interval [0, 1] is an MV-algebra, in which + and — are truncated (to 1 or 0), if
needed.

There is a category MVMod of MV-modules, which are MV-algebras with [0, 1]-scalar
multiplication. Thus MVMod is twice a subcategory in: MVA < MVMod — EMod.
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The effect module [0, 1]X of fuzzy predicates is an MV-module. For a commutative C*-algebra
A the set of effects [0,1] 4 is an MV-module. In fact there is a full and faithful functor:

1
CCstaryu % MVMod (6)

where CCstaryy is the category of commutative C*-algebras, with MIU-maps, preserving
multiplication, involution and unit (aka. *-homomorphisms).
Having seen this background information we continue our series of examples.

4.1 Sets and effect modules

As noted above, fuzzy predicates yield a functor Sets — EMod®P. This functor involves
homming into [0, 1], and has an adjoint that is used as starting point for several variations.

EMod® op —
Hom(—,[O,l])(4>Hom(—7[0,1]) y EMod [0, 1% EMod (€)= CCHyep
Sets \ /t .
X —-~ EMod(Y, [0,1]) Pred 2

O

£=EMod([0,1]7,[0,1])

The induced monad £ is the expectation monad introduced in [16]. It can be understood as
an extension of the (finite probability) distribution monad D, since £(X) 2 D(X) if X is a
finite set. The triangle corollary on the right says in particular that Kleisli maps X — £(Y)
are in bijective correspondence with effect module maps [0,1]¥ — [0,1]% acting as predicate
transformers, on fuzzy predicates.

The category of algebras EM(E) of the expectation monad is the category CCHgep, of
convex compact Hausdorff spaces, with a separation condition (see [16, 18] for details). State
spaces in quantum computing are typically such convex compact Hausdorff spaces.

Using the full and faithfulness of the functor [0, 1]_y: Cstarpy — EMod from (5), the
expectation monad can alternatively be described in terms of the states of the commutative
C*-algebra £>°(X) of bounded functions X — C, via:

Stat (£ (X)) ¥ Cstarpy (€°(X),C) 2 EMod([0, }EW(X) [0, 1]c)

EMod ([0, 1], 0,1]) = £(x).

—
=

In this way one obtains the result from [8] that there is a full & faithful functor:
Kt(£) ————— (CCstarpy)™” (8)

embedding the Kleisli category KZ(E) of the expectation monad into commutative C*-algebras
with positive unital maps. On objects this functor (8) is given by X — £°°(X).

4.2 Compact Hausdorff spaces and effect modules

In the previous example we have used the set EMod(F,[0,1]) of effect module maps
E — [0, 1], for an effect module E. It turns out that this homset has much more structure: it
is a compact Hausdorff space. The reason is that the unit interval [0, 1] is compact Hausdorff,
and so the function space [0, 1]F too, by Tychonoff. The homset EMod(FE, [0,1]) < [0, 1]
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can be described via a closed subset of maps satisfying the effect module map requirements.
Hence EMod(F, [0,1]) is compact Hausdorff itself. We thus obtain the following situation.

EMod®? EMod® T > & R CCH
Hom(—,[0,1]) (\—| dHom(—,[o,u) y EMod, (X, [0,1]) o M(R)= sep
CH
X —— EMod(Y, [0,1]) Pred A‘tat
O = N

R=EMod(C(—,[0,1]),[0,1])

For a compact Hausdorff space X, the subset C(X,[0,1]) < [0,1]% of continuous maps
X —[0,1] is a (sub) effect module. The induced monad R(X) = EMod(C(X,[0,1]),[0,1])
is the Radon monad. Using the full & faithful functor (5) the monad can equivalently be
described as X — Stat(C(X)), where C(X) is the commutative C*-algebra of functions
X — C. The monad occurs in [25] as part of a topological and domain-theoretic approach to
information theory. The main result of [8] is the equivalence of categories

KUR) ~ (CCstarpy)”

between the Kleisli category of this Radon monad R and the category of commutative
C*-algebras and positive unital maps. This shows how (commutative) C*-algebras appear in
state-and-effect triangles (see also [15]).

The algebras of the Radon monad are convex compact Hausdorff spaces (with separation),
like for the expectation monad &, see [9] for details.

4.3 Compact Hausdorff spaces and MV-modules

The adjunction EMod® = CH can be restricted to an adjunction MVMod°® = CH,
involving MV-modules instead of effect modules. This can be done since continuous functions
X — [0, 1] are appropriately closed under joins V, and thus form an MV-module. Additionally,
for an MV-module E, the MV-module maps E — [0, 1] form a compact Hausdorff space
(using the same argument as in the previous subsection).

Via this restriction to an adjunction MVMod®® = CH we hit a wall again.

» Lemma 4. For a compact Hausdorff space X , the unitn: X — MVMod (C(X, [0,1]),[0,1]),
given by n(x)(p) = p(z), is an isomorphism in CH.

This result can be understood as part of the Yosida duality for Riesz spaces. It is
well-known in the MV-algebra community, but possibly not precisely in this form. For
convenience, we include a proof.

Proof. We only show that the unit 7 is an isomorphism, not that it is also a homeomorphism.

Injectivity is immediate by Urysohn. For surjectivity, we first establish the following two

auxiliary results.

1. For each p € C(X,[0,1]) and w € MVMod(C(X,[0,1]),[0,1]), if w(p) = 0, then there is
an ¢ € X with p(z) =0.
If not, then p(x) > 0 for all # € X. Hence there is an inclusion X C {J,.,p~*((r,1]). By
compactness there are finitely many r; with X C J, p~ L ((ri, 1]) Thus for r = A, 7 >0
we have p(x) > r for all x € X. Find an n € N with n-r > 1. The n-fold sum n - p in the
MV-module C(X, [0, 1]) then satisfies p(x) =1 for all , so that n-p =1 in C(X, [0, 1]).
But now we get a contradiction: 1 = w(1l) =w(n-p) =n-w(p) =0.
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2. For each finite collection of maps p1,...,p, € C(X,[0,1]) and for each function w €
MVMod(C(X,[0,1]),[0,1]) there is an z € X with w(p;) = p;(z) for all 1 <i < n.
For the proof, define p € C(X,[0,1]) using the MV-structure of C(X,[0,1]) as:

p o=\ (pi—wlpi) 1)V (wp:)-1-pi).

K2

Since the state w: C(X,[0,1]) — [0, 1] preserves the MV-structure we get in [0, 1]:
w(p) = \/i(w(l?i) —w(pi) - 1)V (w(pi) -1 —w(p)) = 0.

Hence by the previous point there is an « € X with p(z) = 0. But then p;(z) = w(p;), as
required.

Now we can prove surjectivity of the unit map n: X — MVMod(C(X7 [0,1]),]0, 1]) Let
w: C(X,[0,1]) — [0,1] be an MV-module map. Define for each p € C(X,[0,1]) the subset
Uy, ={zx € X | w(p) # p(x)}. This subset U, C X is open since it can be written as
J71(R —{0}), for the continuous function f(x) = p(z) — w(p).

Suppose towards a contradiction that w # n(z) for all 2 € X. Thus, for each 2 € X there
is a p € C(X, [0, 1]) with w(p) # n(z)(p) = p(z). This means X C (J, U,. By compactness
of X there are finitely many p; € C(X,[0,1]) with X C (J, Up,. The above second point
however gives an € X with w(p;) = p;(z) for all i. But then x ¢ J; Up,. <

4.4 Sets and directed complete effect modules

In the remainder of this paper we shall consider effect modules with additional completeness
properties (wrt. its standard order). Specifically, we consider w-complete, and directed-
complete effect modules. In the first case each ascending w-chain zg < x7 < --- has a least
upperbound \/,, z,,; and in the second case each directed subset D has a join \/ D. We write
the resulting subcategories as:

DcEMod ———— w-EMod ——— EMod

where maps are required to preserve the relevant joins \/.
We start with the directed-complete case. The adjunction EMod®” & Sets from
Subsection 4.1 can be restricted to an adjunction as on the left below.

DcEMod®?

op T
Hom(—,[0,1]) (4 )Hom(—,[o,l]) y DeBMod 1 41x DcEMod® T "EM(Ex)=Conv,,
Sets ’ \ /
X ——= DcEMod(Y, [0,1]) Pred Stat
U Sets I@(goo)

£o=DcEMod([0,1]7,[0,1])

The resulting monad €, = DcEMod ([0,1](7),[0,1]) on Sets is in fact isomorphic! to the
infinite (discrete probability) distribution monad D.,. We recall, for a set X,

Doo(X) = {w:X —[0,1] | supp(w) is countable, and ) w(x) = 1}.

1 This isomorphism Es = Do in Proposition 5 is inspired by work of Robert Furber (PhD Thesis,
forthcoming): he noticed the isomorphism NStat(£°° (X)) =& Doo (X) in (11), which is obtained here as
a corollary to Proposition 5.
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The subset supp(w) C X contains the elements z € X with w(z) # 0. The requirement in
the definition of Dy, (X) that supp(w) be countable is superfluous, since it follows from the
requirement Y w(z) = 1. Briefly, supp(w) C UU,,~ X, where X,, = {z € X |w(z) > 1}
contains at most n — 1 elements (see e.g. [27, Prop. 2.1.2]).

» Proposition 5. There is an isomorphism of monads Do, = €, where Ex is the monad
induced by the above adjunction DcEMod®® & Sets.

Proof. For a subset U C X we write 1y: X — [0, 1] for the ‘indicator’ function, defined
by 1y(r) = 1if x € U and 1y(z) = 0 if » ¢ U. We write 1, for 1;,,. This function
1): P(X) = [0, 1]% is a map of effect algebras that preserves all joins.

Let h € £.(X), so h is a Scott-continuous map of effect modules h: [0,1]% — [0, 1].
Define h: X — [0,1] as h(x) = h(1,). Notice that if U C X is a finite subset, then:

1 = h(1) = h(lx) > h(ly) = h(@uepls) = Queph(ls) = ©,cph@).

We can write X as directed union of its finite subsets, and thus also 1x = \/{1y | U C
X finite}. But then h € Do (X), because h preserves directed joins:

1 = h(lx) = V{h(ly) |UCX finite} = \V{X,cphl(z)|UC X finite} = 3,y h(x),

Conversely, given w € Do (X) we define w: [0,1]¥ — [0,1] as w(p) = >,y p(2) - w(2).
It is easy to see that w is a map of effect modules. It is a bit more challenging to see that it
preserves directed joins \/, p;, for p; € [0,1]%.

First we write the countable support of w as supp(w) = {zg,x1,22,...} € X in such a
way that w(zo) > w(x1) > w(wg) > ---. Wehave 1 =3 v w(x) =) yw(z,). Hence, for
each N € N we get:

Ysnw(@n) = 1=3 yw(@a).

By taking the limit N — oo on both sides we get:

lim > _yw(z,) = 1- lim anNw(scn) = 1= yw(@,) = 1-1 = 0.

N—o0 N—o0

We have to prove w(\/, p;) = \/; W(p;). The non-trivial part is (<). For each N € N we have:

W(Vip) = 2pen(Vipi)(an) - w(zn)

= Yaen(Vipi(zn)) - w(zn)

= ZnEN Vi pl(xn) tw xn)
ZnSN \/sz(xn) “w(ry) ) + Zn>N \/i Pi(xn) - w(ry)
Vi Enngi(mn) cw(an) ) + ( Xnsn Vipi(an) - w(zn)

Vi Een pil@a) () + (S,onwlen))  since pi(x) € [0.1)

IN

w

Hence we are done by taking the limit N — oo. Notice that we use that the join \/ can be
moved outside a finite sum. This works precisely because the join is taken over a directed set.

What remains is to show that these mappings h +— h and w +— @ yield an isomorphism
Doo(X) = E5(X), which is natural in X, and forms an isomorphism of monads. This is left
to the interested reader. |

As a result, the Eilenberg-Moore category EM(Ex) is isomorphic to EM(Ds) = Convy,
where Conv., is the category of countably-convex sets X, in which convex sums )y 7nZn
exist, where x,, € X and r, € [0,1] with > 7, = 1.



B. Jacobs

We briefly look at the relation with C*-algebras (actually W*-algebras), like in Subsec-
tion 4.1. We write Wstarypy for the category of W*-algebras with normal positive unital
maps. The term ‘normal’ is used in the operator algebra community for what is called
‘Scott-continuity’ (preservation of directed joins) in the domain theory community. This
means that taking effects yields a full and faithful functor:

[0,1](-)
Wstarypy —— DcEMod 9)

This is similar to the situation in (5) and (6). One could also use AW *-algebras here. Next,
there is now a full and faithful functor to the category of commutative W*-algebras:

I@('DOO) = I@(Ew) —_—> CWstaerU (10)

On objects it is given by X — ¢*°(X). This functor is full and faithful since there is a
bijective correspondence:

> (X) — (Y) in CWstaerU
Y —— NStat({°(X)) = E0(X) = Do (X) in Sets
where the isomorphism 2 describing normal states is given, like in (7), by:
. (9)
NStat(£(X)) %' Wstarypy (£°(X),C) = DcEMod ([0, 1] (x), [0, 1]c)

_ X
= DcEMod([0,1]*,0,1]) (11)
2 D (X).

4.5 Measurable spaces and w-complete effect modules

In our final example we use an adjunction between effect modules and measurable spaces
(instead of sets or compact Hausdorff spaces). We write Meas for the category of measurable
spaces (X, X x), where ¥x C P(X) is the o-algebra of measurable subsets, with measurable
functions between them (whose inverse image maps measurable subsets to measurable subsets).
We use the unit interval [0, 1] with its standard Borel o-algebra (the least one that contains
all the usual opens). A basic fact in this situation is that for a measurable space X, the
set Meas(X, [0,1]) of measurable functions X — [0, 1] is an w-effect module. The effect
module structure is inherited via the inclusion Meas(X, [0, 1]) < [0, 1]¥. Joins of ascending
w-chains pg < p; < --- exists, because the (pointwise) join \/,, p, is a measurable function
again. In this way we obtain a functor Meas(—, [0, 1]): Meas — w-EMod®".

In the other direction there is also a hom-functor w-EMod(—, [0,1]): w-EMod®® —
Meas. For an w-effect module E we can provide the set of maps w-EMod(FE, [0,1]) with a o-
algebra, namely the least one that makes all the evaluation maps ev,: w-EMod(FE, [0, 1]) —
[0, 1] measurable, for x € E. This function ev, is given by ev,(p) = p(x). This gives the
following situation.

g EMod®® T “&
Hom(—,[0,1]) (\—| )Hom(f,[O,l]) % % Meas(X, [0, 1]) w- o ’ M(G)
M /‘
Cjas X— w—EMOd(Y, [O’ 1]) Pred Stat
Meas I@(g)

G=w-EMod(Meas(—,[0,1]),[0,1])

We use the symbol G for the induced monad because of the following result.

127
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» Proposition 6. The monad G = w-EMod(Meas(—, [0,1]),[0,1]) on Meas in the above
situation is (isomorphic to) the Giry monad [10], given by probability measures:

def

Giry(X) = {¢:Xx —[0,1] | ¢ is a probability measure} = w-EA(Zx,][0,1]).

Proof. The isomorphism involves Lebesgue integration:

I (Mw—I(1pr))
— .
G(X) = w-EMod(Meas(X, [0,1]), [0,1]) x~ w-EA(Xx,[0,1]) = Giry(X)
v
¢ (p— [ pde))
See [13] or [19] for more details. <

The above triangle is further investigated in [13]. It resembles the situation described

in [4] for Markov kernels (the ordinary, not the abstract, ones).
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