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Abstract
While computer programs and logical theories begin by declaring the concepts of interest, be it
as data types or as predicates, network computation does not allow such global declarations, and
requires concept mining and concept analysis to extract shared semantics for different network
nodes. Powerful semantic analysis systems have been the drivers of nearly all paradigm shifts
on the web. In categorical terms, most of them can be described as bicompletions of enriched
matrices, generalizing the Dedekind-MacNeille-style completions from posets to suitably enriched
categories. Yet it has been well known for more than 40 years that ordinary categories themselves
in general do not permit such completions. Armed with this new semantical view of Dedekind-
MacNeille completions, and of matrix bicompletions, we take another look at this ancient mystery.
It turns out that simple categorical versions of the limit superior and limit inferior operations
characterize a general notion of Dedekind-MacNeille completion, that seems to be appropriate for
ordinary categories, and boils down to the more familiar enriched versions when the limits inferior
and superior coincide. This explains away the apparent gap among the completions of ordinary
categories, and broadens the path towards categorical concept mining and analysis, opened in
previous work.
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Figure 1 Unidentified object: The external and the internal view.

1 Introduction

1.1 Problem of concept mining and analysis

Suppose you come across upon the object depicted in Fig. 1. The conic top is easily removed
to uncover the mechanism on the right. What is this thing?

You would surely approach the problem from both directions at once: on one hand,
you would look how the parts fit together and try to discern the structural components of
the device; on the other hand, you would twiddle with some parts and watch what moves
together, trying to figure out the functional modules. The parts that move together may not
be next to each other, but they probably belong to the same functional module. The parts
that are related structurally are more likely to be related functionally. If you manage to
discern some distinct components corresponding to distinct functionalities, then each such
component-function pair will presumably correspond to a concept conceived by the designer
of the device. By analyzing the device you will extract the designer’s idea.

Similar analyses are formalized under different names in different research communities:
some speak of concept analysis, some of knowledge acquisition, semantic indexing, or data
mining [4, 8, 22]. The application domains and the formalisms vary very widely, from
mathematical taxonomy [11], through text analysis [32] and pattern recognition [5], to web
search and recommender systems [31]. The importance of formalizing and implementing
concept analysis grew rapidly with the advent of the web, as almost anything found on the
web requires some sort of concept mining and analysis, not only because there are no global
semantical declarations, and the meaning has to be extracted from the network structure
[23], but also to establish trust [25]. Diverse toy examples of such concept analysis tasks,
motivating the modeling approach extended in this paper, can be found in [24, 25, 27, 28].

The analytic process that a formal concept analyst may initiate upon an encounter with
the unidentified object from Fig. 1 is thus not all that different from what a curious child
would do: they would both start by recording the observed components on one hand, and
the observed functionalities on the other, and they would note which components are related
to which functionalities. With the “yes-no” relations, the formal version of this process leads
to the simple and influential method that goes under the name Formal Concept Analysis
(FCA) [7, 6]. If the relations between the components and the functionalities are quantified
by real numbers and stored in pattern matrices, then the analysis usually proceeds by the
methods of statistics and linear algebra, and goes under the name Principal Component
Analysis (PCA) [13], or Latent Semantic Analysis (LSA) [17], etc. It performs the singular
value decomposition of the pattern matrix, and thus mines the concepts as the eigenspaces
of the induced linear operators.
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132 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

Interestingly, if you wanted to record that the unidentified device has 4 identical wheels,
and that each wheel has 12 identical cogs, and that two of the wheels are related to two
different functionalities, driving and steering, you would be led beyond the familiar concept
mining approaches. While the experts in these approaches would surely figure out multiple
tricks to record what is needed (e.g. by using multi-level pattern matrices), the straightforward
approach leads beyond the FCA matrices of 0s and 1s, and beyond the LSA matrices of real
numbers, to matrices of sets between components on one hand, matrices of sets between
functionalities on the other hand, and matrices of sets between components and functionalities
in-between. You would construct a category of components, a category of functionalities, and
a profunctor/distributor between them. If the cog is recognized as a part, then a coproduct
of 12 cogs would be embedded in each wheel. If the cogs are attached with rivets, then
their morphisms may not be monic, since the distinctions of some of their parts may be
obliterated through deformations. So why have such categorical models not been used in
concept analysis?

Many of the concept mining approaches derived from LSA are instances of spectral
decomposition [1]. Formalized in terms of enriched category theory [14], the problem of
concept mining turns out to be an instance of a general spectral decomposition problem
[25, 27], which can also be viewed as a problem of minimal bicompletion of a suitably
enriched matrix [28]. Even the standard linear algebra of LSA seems to be an instance
of such bicompletion, over a suitable category1 of real numbers. The problem of minimal
bicompletions of enriched categories, which subsume the Dedekind-MacNeille completions of
posets, is the special case, arising when a category itself is viewed as a matrix. Instantiated
to categories enriched over sets, also known as “ordinary” categories, this turned out to be a
strange problem, as suggested by the quotations at the very beginning of the paper. Maybe
this is the reason for the notable absence of ordinary categories in the extensive concept
mining toolkits? We sketch the problem of bicompletions of ordinary categories in the next
section.

1.2 Problem of minimal bicompletions of matrices and categories

Throughout the paper, we assume familiarity with the basic concepts of category theory, e.g.
at the level of [20]. To understand the general approach to concept mining through minimal
bicompletions, explained in this section, the reader may need some ideas about enriched
categories as well, e.g. as presented in [14]. Beyond this section, the rest of the paper will be
about ordinary categories.

Suppose that we have thus proceeded as in the preceding section, and built a category of
components A and a category of functionalities B. If we have recorded just the inclusion
relations, then each of these categories is a poset, i.e. enriched over the ordered monoid
({0, 1},∧, 1). If we have recorded the distances among the components on one hand, and
among the functionalities on the other, then our categories are metric spaces [18], viewed
as categories enriched over the monoidal poset ([0,∞],+, 0). If we capture the components
and the functionalities as ordinary categories, then A and B are enriched over the monoidal
category (Set,×, 1).

1 not poset!
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Φ: Ao × B −→ V

Φ# : A −→
(
VB)o Φ# : B −→ VAo

Φ∗ : VAo −→
(
VB)o Φ∗ :

(
VB)o −→ VAo

←−Φ = Φ∗Φ∗ : VAo −→ VAo −→Φ = Φ∗Φ∗ :
(
VB)o −→ (

VB)o
Figure 2 Deriving the two extensions and the two kernels of a matrix Φ.

A ⇓A (⇓A)
←−Φ

B ⇑B (⇑B)
−→Φ

∇

∇Φ

©Φ

Φ#

Φ∗

←−Φ

Φ
⊥
U

←→Φ©

∆

∆Φ

Φ#

a Φ∗

−→Φ

Φ
⊥
V

Figure 3 Minimal bicompletion of a matrix Φ.

1.2.1 The setting of minimal bicompletion

The relationships between the components and the functionalities will be expressed as a
V-enriched functor Φ: Ao × B −→ V, where V is the enriching category, such as {0, 1}, [0,∞]
or Set above. We call such V-enriched functor a matrix. In particular, given a V-matrix
Φ: Ao × B −→ V we derive its extensions as in Fig. 2.

The functors Φ# and Φ# are the transpositions of Φ. The presheaves in the form Φ#b

and the postsheaves in the form Φ#a are called Φ-representable. The functors Φ∗ and Φ∗
are the Kan extensions [14, Ch. 4] of Φ# and Φ#. Since they form an adjunction, their
composite ←−Φ is a monad and −→Φ is a comonad.

When the enrichment is clear from the context, it is convenient to abbreviate the matrix
Ao×B −→ V to A# B and the completions VAo and

(
VB)o to ⇓A and ⇑B respectively, so that

the derivations in Fig. 2 give the diagram in Fig. 3 where ∇ and ∆ are the Yoneda embeddings
[14, Sec. 2.4]. The monad ←−Φ = Φ∗Φ∗, induced by the Kan extensions Φ∗ a Φ∗ : ⇑B −→ ⇓A,
induces the category of (Eilenberg-Moore) algebras (⇓A)

←−Φ , whereas the comonad −→Φ = Φ∗Φ∗
induces (⇑B)

−→Φ . The functor ∇Φ = Φ ◦ ∇ maps A to free ←−Φ-algebras generated by the
representable presheaves, whereas the functor ∆Φ = Φ ◦∆ maps B to cofree −→Φ-coalgebras
cogenerated by the representable postsheaves.

1.2.2 Familiar cases

When V = {0, 1}, the V-enriched categories A and B are posets. Then ⇓A consists of antitone
maps ←−L : Ao −→ {0, 1}, or equivalently of the lower-closed sets in A, whereas ⇑B consists of
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134 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

the monotone maps −→U : B −→ {0, 1}, or equivalently of the upper-closed sets in B. The Yoneda
embedding ∇ : A −→ ⇓A is then the supremum (or join) completion, and the ∆: B −→ ⇑B is
the infimum (or meet) completion. A matrix Φ: Ao × B −→ {0, 1} corresponds to a subset of
the product poset which is lower closed in A and upper closed in B. Its extensions are then

Φ∗←−L =
{
u ∈ B

∣∣∣ ∀x.←−L (x)⇒ Φ(x, u)
}

(1)

Φ∗
−→
U =

{
` ∈ A

∣∣∣ ∀y.−→U (y)⇒ Φ(`, y)
}

(2)

Intuitively, Φ∗←−L can be construed as the set of upper bounds in B of the Φ-image of the
lower set ←−L , whereas Φ∗

−→
U can be construed as the set of Φ-lower bounds of the upper set

−→
U . The operator ←−Φ = Φ∗Φ∗ thus maps each lower set ←−L to the set of the Φ-lower bounds
of the set of its Φ-upper bounds; whereas the operator −→Φ = Φ∗Φ∗ maps each upper set −→U
to the set of the Φ-upper bounds of its Φ-lower bounds. Both operators are thus closure
operators. Their lattices of closed sets (⇓A)

←−Φ and (⇑B)
−→Φ turn out to be isomorphic, and

form the nucleus of Φ [27]. A ←−Φ-closed set in A and the corresponding −→Φ-closed set in B, of
course, completely determine each other, but the most informative presentation carries both,
as Dedekind-style cuts. When A = B and Φ ⊆ Ao × A is the partial ordering

Φ(x, y) ⇐⇒ x ≤ y (3)

then the nucleus is just the Dedekind-MacNeille completion mA of the poset A [21]. This is
the minimal bicompletion, in the sense that the embedding A −→ mA preserves any suprema
and infima that A may already have, and only adds those that do not yet exist [21, 2, 12,
III.3.11]. The consequence of this minimality is that every element of the completion mA
is both a supremum and an infimum of the elements of A. The nucleus of a {0, 1}-matrix
is a minimal bicompletion in a similar sense, as are the nuclei of [0, 1]-matrices, and of
[0,∞]-matrices2: the nuclei give the semantic bicompletions of matrices, uncovering their
concepts [27, 28].

1.2.3 The trouble with ordinary categories
Our main concern in the present paper are the minimal bicompletions of matrices and
categories enriched over (Set,×, 1). Categories enriched in Set are usually called ordinary
categories. Set-matrices are variably called profunctors or distributors. We increase the
wealth of terminology by calling them matrices. The functors ←−α ∈ ⇓A = SetA

o

are called
presheaves. The functors

−→
β ∈ ⇑B =

(
SetB

)o are usually called covariant functors to Set, but
we call them postsheaves. We use without further explanation the well known fact [9, 19]
that presheaves are equivalent to discrete fibrations, and that postsheaves are equivalent
with discrete opfibrations.

We also call the categorical limits the infima, and the categorical colimits the suprema,
following Lambek’s 1966 Lectures on Completions of Categories [15], quoted at the beginning

2 Since the monoidal posets ([0,∞], +, 0) and ([0, 1],×, 1) are isomorphic as monoidal categories, all
statements about categories enriched over them transfer trivially. However, isomorphisms are not always
trivial phenomena. E.g., the Laplace transform is an isomorphism, which maps differential operations
into algebraic operations, and thus allows solving differential equations as algebraic equations, and
mapping back the solutions [30]. In a similar way, it often happens that a distance space presentation
of a data pattern, enriched over ([0,∞], +, 0), displays some geometric content, whereas an isomorphic
proximity lattice presentation of the same data pattern, enriched over ([0, 1],×, 1), displays some
generalized order structure, not apparent in the first interpretation.
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of this paper. The Yoneda embeddings ∇ : A −→ ⇓A and ∆: B −→ ⇑B are then again,
respectively, the supremum and the infimum completion, this time of the categories A and
B. The transposes Φ# and Φ# now extend to the adjunction Φ∗ a Φ∗ : ⇑B −→ ⇓A, which
are defined similarly to (1–2). More precisely, the mappings between the A-presheaves and
B-postsheaves

←−α : Ao −→ Set
Φ∗←−α : B −→ Set

−→
β : B −→ Set

Φ∗
−→
β : Ao −→ Set

are defined as follows

Φ∗←−α (u) = lim←−
x∈A

(
←−α (x)⇒ Φ(x, u)

)
= ⇓A

(
←−α ,Φ#u

)
(4)

Φ∗
−→
β (`) = lim←−

y∈B

(−→
β (y)⇒ Φ(`, y)

)
= ⇑B

(
Φ#`,

−→
β
)

(5)

Here we write X ⇒ Y for the set exponents Y X not only because the multiple exponents
tend to “fly away” in the latter notation, but also to emphasize the parallel with (1–2). When
A = B is the same category, and Φ = H : Ao ×A −→ Set is the hom-set matrix, then H∗←−α (u)
is the set of (right) cones from the presheaf ←−α , viewed as a diagram, to the object u as the
tip of the cone. Dually, H∗

−→
β (`) is the set of (left) cones from the tip ` to the diagram

−→
β .

For a general matrix Φ: A# B, thinking of the elements of each set Φ(a, b) as “arrows” from
a ∈ A to b ∈ B also allows thinking of −→% ∈ Φ∗←−α (u) as a (right) “cone” from the diagram ←−α
in A to the tip u ∈ B, and of

←−
λ ∈ Φ∗

←−
β (`) as a (left) “cone” from the tip ` ∈ A to a diagram

←−
β in B. The presheaves and postsheaves of (4) and (5) thus generalize the lower and the
upper sets of (1) and (2).

At the very beginning of his lectures, Lambek raised the question of the Dedekind-
MacNeille completion of a category, and left it open. He did not raise the general question of
semantic completions of matrices (profunctors, or distributors) only because the semantical
impact was not clear at the time; but the general situation from Fig. 3 was well known.
Lambek’s open question of the Dedekind-MacNeille completion of a category was closed by
Isbell a couple of years later, who showed in [10, Sec. 3] that already the group Z4, viewed
as a category with a single object, cannot have a completion generated both by the suprema
and by the infima.

However, taking a broader semantical view, and seeking semantic completions of matrices,
shows that the story does not really end with Isbell’s counterexample. A semantic completion
of a matrix, relating, say, the parts and the moves observed within a device like the one on
Fig. 1, should uncover the concepts underlying the design of the device. These concepts are
expressed through the structural component of the device, and through its functional units.
When the matrix is enriched over a monoidal poset, then there is a one-to-one correspondence
between the structural components and the functional modules, and they form the nucleus
of the matrix [27, 28]. In reality, though, a single structural component may play a role in
several functional modules, and vice versa. While the posetal enrichment cannot capture
this, the enrichment in sets, or in a proper category of real numbers, can record how many
copies of a given a part are used for a certain function. Modeled in this way, the spaces
of structural components and of functional modules will not be isomorphic. The concepts
will not be uncovered as a single category of component-function pairs, like in the posetal
case, but as a nontrivial matrix relating some component-concepts approximated by their
functionalities with some function-concepts approximated by the components that perform
them.
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136 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

Contributions

To spell this out, we consider the following technical questions:
(a) What kind of completions of a given matrix Φ: A# B are provided by the categories

(⇓A)
←−Φ and (⇑B)

−→Φ ? (The idea is that the former captures the component-concepts, the
latter the function-concepts.)

(b) What kind of matrix ←→Φ : (⇓A)
←−Φ # (⇑B)

−→Φ is the minimal bicompletion of Φ: A# B?
(Capturing the relations between the component-concepts and the function-concepts.)

Our approach to these questions is based on a new family of limits and colimits, introduced
in the next section. It seems intuitive and appropriate to call them limit inferior, and limit
superior. For consistency, we also revert, albeit just for the duration of this paper3, from
limits and colimits to infima and suprema, following Lambek [15]. The reader is reminded
that in posets

the limit inferior is the supremum of the lower bounds of a set, whereas
the limit superior is the infimum of the upper bounds.

Mutatis mutandis, the categorical concepts will behave similarly.

Overview of the paper

In Sec. 2, we propose the answers to the above question. Sec. 2.1 spells out the preliminaries.
Sec. 2.2 defines categorical limits inferior and superior and characterizes their completions.
Sec. 2.3 proposes an answer to question (a) above. Sec. 2.4 proposes an answer to question (b)
above. In Sec. 3 we study some simple examples, illustrating and validating the introduced
concepts. Sec. 3.1 describes a monadicity workflow useful for analyzing the examples. Sec. 3.2
characterizes completions of constant matrices. Sections 3.3 and 3.4 characterize completions
of the matrices representing groups or posets, respectively. Sec. 3.5 characterizes completions
of a vector in the (cyclic) group Zp of prime order p. Sec. 4 closes the paper, to some extent.

Due to the space constraints of this conference paper and the scope of the presented
material, all proofs and many lemmas had to be moved into the appendices. Full details will
require a significantly longer paper.

2 Categorical limit inferior and limit superior

2.1 Preliminaries

Although suprema and infima are very basic concepts, familiar to most readers, and easily
found in [20, Sec. III.3–4], we spell them out here not only to introduce the notation and
practice using the words infimum and supremum instead of limit and colimit, but also to
align these familiar definitions with the variations needed to define the limit superior and
the limit inferior.

Let C and J be categories and CJ the category of functors between them, with natural
transformations as morphisms. Let � : C −→ CJ be the functor taking each object of x of C
to the constant functor �x : J −→ C, which maps all objects of J to x ∈ C and all morphisms
of J to idx.

3 We hope that our terminological contributions, advancing from “profunctors” and “distributors” to
“matrices” and from “covariant functors to Set” to “postsheaves”, as well as retreating from “limits” to
“infima” and from “colimits” to “suprema”, will not end up being the central features of the paper.
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The suprema and the infima in C can be defined as, respectively, the left and the right
adjoint of the constant functor, i.e.

lim−→ a � a lim←− : CJ −→ C

These adjunctions can be viewed as the natural bijections

CJ(F,�x) ∼= C
(
lim−→F, x

)
(6)

CJ(�x, F ) ∼= C
(
x, lim←−F

)
(7)

It is well known that the Yoneda embeddings realize the lim−→ and lim←−-completions [20,
Sec. X.6]:
∇ : C −→ ⇓C is the lim−→-completion of C, whereas
∆: C −→ ⇑C is the lim←−-completion of C

where
⇓C denotes the category SetC

o

of C-presheaves, or equivalently4 the category of discrete
fibrations over C,
⇑C denotes the category

(
SetC

)o of C-postsheaves, or equivalently the opposite category
of discrete opfibrations over C.

For completeness, we note the following well known and routinely checkable fact.

I Lemma 2.1. Given a functor F : J −→ C, consider the presheaf and the postsheaf(←−
F : C//F −→ C

)
∈ ⇓C

(−→
F : F//C −→ C

)
∈ ⇑C (8)

where C//F is the category of connected components5 of the comma category C/F from IdC
to F , whereas F//C is the category of connected components of the comma category F/C the
other way around [20, Sections II.6 and IX.3]. Then

lim−→F = lim−→
←−
F lim←−F = lim←−

−→
F (9)

Notations have been introduced in Sec. 1.2, especially in Figures 2 and 3. The next section
studies the special case Φ = H : C# C of the matrix of hom-sets of a category.

2.2 Limit inferior and limit superior over a category
I Definition 2.2. For arbitrary categories C and J we define

the category of left saturated diagrams CJ
⇓ to consist of

objects |CJ
⇓| = |CJ|

morphisms CJ
⇓(F,G) = ⇓C

(
H∗
−→
F ,H∗

−→
G
)

the category of right saturated diagrams CJ
⇑ to consist of

objects |CJ
⇑| = |CJ|

morphisms CJ
⇑(F,G) = ⇑C

(
H∗
←−
F ,H∗

←−
G
)

4 The equivalence between the “indexed” and “fibered” versions of sheaves lies at the heart of
Grothendieck’s descent theory [9, VI], but also generalizes to substantially different purposes [29, 26].

5 To be precise, each fiber category (C//F )x at x ∈ C is defined to be the category of connected components
of the fiber category (C/F )x = C/F x.
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I Definition 2.3. In a category C we define
the limit inferior operation −→lim over left diagrams from J by the adjunction
−→lim a � : C −→ CJ

⇓

which can be viewed as the natural bijection

CJ
⇓(F,�x) ∼= C

(−→limF, x
)

the limit superior operation ←−lim over right diagrams from J by the adjunction

� a
←−lim : CJ

⇑ −→ C

which can be viewed as the natural bijection

CJ
⇑(�x, F ) ∼= C

(
x,
←−limF

)
I Remark. Note that the operations −→lim and ←−lim are defined over arbitrary diagrams. Indeed,
the objects of the categories of saturated diagrams are arbitrary diagrams; the saturation is
imposed on them in the definitions of the morphisms in these categories.

The operations lim−→ and lim←− are also defined over arbitrary diagrams, but differently: the
supremum of a diagram is equal to the supremum of the induced presheaf; and the infimum
of a diagram is equal to the infimum of the induced postsheaf, as stated in Lemma 2.1. This
is analogous to lattices, where a supremum of a set is equal to the supremum of its lower
closure, whereas the infimum of a set is the infimum of the upper closure. However, the limit
inferior of a diagram is the supremum of the presheaf induced by the postsheaf induced by
the diagram; and the limit superior is the infimum of the postsheaf induced by the presheaf
induced by the diagram. In a partially ordered set, the limit inferior of a set is the join of
the lower bounds of all of its upper bounds; whereas the limit superior of a set is the meet of
the upper bounds of all of its lower bounds.

I Lemma 2.4. Every representable presheaf ∇x is a free algebra in ⇓C
←−
H , with ∇x

η∼=
←−
H∇x.

Every representable postsheaf ∆x is a cofree coalgebra in ⇑C
−→
H , with −→H∆x

ε∼= ∆x.

I Proposition 2.5. Every ←−H -algebra is a limit inferior in ⇓C
←−
H of representable presheaves,

viewed as ←−H -algebras. Every −→H -coalgebra is a limit superior in ⇑C
−→
H of representable

postsheaves, viewed as −→H -coalgebras.

I Corollary 2.6. ⇓C
←−
H is −→lim-complete. ⇑C

−→
H is ←−lim-complete.

I Theorem 2.7. The extended Yoneda embeddings realize the limit inferior and limit superior
completions:
∇H : C ∇−→ ⇓C H−→ ⇓C

←−
H is the −→lim-completion of C, whereas

∆H : C ∆−→ ⇑C H−→ ⇑C
−→
H is the ←−lim-completion of C.

2.3 Limit inferior and limit superior over a matrix
Given a category C, Lem. 2.1 implies that the suprema and the infima, defined by (6) and
(7) respectively, can be viewed as the left and the right adjoint of the corresponding Yoneda
embeddings:

C ⇓C
∇
⊥

lim−→
C ⇑C

∆
>

lim←−
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Given a matrix Φ: Ao × B −→ Set, the suprema and the infima weighted by its transposes
Φ# : A −→ ⇑B and Φ# : B −→ ⇓A can similarly be viewed as adjoints:

B ⇓A
Φ#

⊥

lim−→Φ

A ⇑B
Φ#
>

lim←−Φ

It is, of course, well known and easy to see that the weighted limits can in ordinary categories
be reduced to the ordinary limits. The situation is slightly more subtle with the weighted
inferior and superior limits. To align the two situations, note that the adjunctions

B
(

lim−→Φ
←−α , b

)
∼= ⇓A

(
←−α ,Φ#b

)
A
(
a, lim←−Φ

−→
β
)
∼= ⇑B

(
Φ#a,

−→
β
)

will now become

A
(−→limΦ

−→
β , a

)
∼= (⇓A)

←−Φ
(

Φ∗
−→
β ,∇Φa

)
B
(
b,
←−limΦ

←−α
)
∼= (⇑B)

−→Φ
(

∆Φb,Φ∗←−α
)

I Definition 2.8. Given a matrix Φ: Ao×B −→ Set, with the induced extensions as in Fig. 3,
we define the operations Φ-limit inferior −→limΦ and ←−limΦ by the following adjunctions

A (⇓A)
←−Φ

∇Φ

⊥

−→limΦ

B (⇑B)
−→Φ

∆Φ

>

←−limΦ

where ∇Φ and ∆Φ are as defined in Fig. 3.

2.3.1 Two pairs of “Yoneda embeddings”
In this section we spell out the basic properties of the two kinds of “Yoneda embeddings”
induced by a matrix Φ: A# B:
←−Φ-algebra representables and −→Φ-coalgebra representables

∇Φ : A −→ (⇓A)
←−Φ ∆Φ : B −→ (⇑B)

−→Φ

Φ-representable presheaves and postsheaves

Φ# : A −→ (⇑B)
−→Φ Φ# : B −→ (⇓A)

←−Φ

The underlying functors are as in Fig. 3. The structures are as follows.

I Lemma 2.9. Every presheaf ←−α ∈ ⇓A induces the −→Φ -coalgebra Φ∗←−α Φ∗η−−→ Φ∗Φ∗Φ∗←−α .
Every Φ-representable postsheaf Φ#a is thus canonically a −→Φ -coalgebra, since Φ#a = Φ∗∇a.

Any postsheaf
−→
β ∈ ⇑B induces the←−Φ -algebra Φ∗

−→
β

Φ∗ε←−− Φ∗Φ∗Φ∗
−→
β . Every Φ-representable

presheaf Φ#b is thus canonically a ←−Φ -algebra, since Φ#b = Φ∗∆b.

I Lemma 2.10 (Matrix Yoneda Lemma). For every a ∈ A and every
−→
β ∈ ⇑B there is a

natural bijection

(⇓A)
←−Φ
(
∇Φa,Φ∗

−→
β
)
∼= Φ∗

−→
β (a) (10)

For every b ∈ B and every ←−α ∈ ⇓A there is a natural bijection

(⇑B)
−→Φ
(

Φ∗←−α ,∆Φb
)
∼= Φ∗←−α (b) (11)

I Corollary 2.11 (Matrix Yoneda embedding).

(⇓A)
←−Φ (∇Φa,Φ#b

) ∼= Φ(a, b) ∼= (⇑B)
−→Φ (Φ#a,∆Φb

)
(12)
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2.3.2 Completeness and generation
I Corollary 2.12. (⇓A)

←−Φ is −→limΦ-complete. (⇑B)
−→Φ is ←−limΦ-complete.

I Proposition 2.13. Every←−Φ -algebra is a limit inferior in (⇓A)
←−Φ of←−Φ -algebra representables.

Every −→Φ -coalgebra is a limit superior in (⇑B)
−→Φ of −→Φ -coalgebra representables.

I Theorem 2.14. The Φ-extended Yoneda embeddings realize the −→limΦ-completion and
←−limΦ-completion:
∇Φ : A ∇−→ ⇓A Φ−→ (⇓A)

←−Φ is the −→lim-completion of A, whereas
∆Φ : B ∆−→ ⇑B Φ−→ (⇑B)

−→Φ is the ←−lim-completion of B.

2.4 Minimal bicompletion of a matrix

2.4.1 Loose extensions
In general, a matrix Φ: A # B always induces a loose extension mΦ: (⇓A)

←−Φ # (⇑B)
−→Φ ,

defined

mΦ(a, b) =

f ∈ ⇓A
(
←−α ,Φ∗

−→
β
)
∣∣∣∣∣∣∣∣∣∣

Φ∗Φ∗←−α Φ∗Φ∗Φ∗
−→
β

←−α Φ∗
−→
β

a

Φ∗Φ∗f

f

Φ∗b

 (13)

I Proposition 2.15. Each of the following squares commutes if and only if the other one
commutes.

Φ∗Φ∗←−α Φ∗Φ∗Φ∗
−→
β Φ∗Φ∗Φ∗←−α Φ∗Φ∗

−→
β

⇐⇒

←−α Φ∗
−→
β Φ∗←−α β

a

Φ∗Φ∗f

Φ∗a

Φ∗Φ∗f ′

f

Φ∗b

f ′

b

The commutativity of the preceding squares implies the commutativity of the following squares,
which are each other’s transposes.

Φ∗Φ∗Φ∗←−α Φ∗Φ∗
−→
β

←−α Φ∗
−→
β Φ∗Φ∗Φ∗

−→
β ⇐⇒

Φ∗←−α
−→
β

Φ∗Φ∗f ′

f Φ∗b

η
Φ∗η

f ′

b

Φ∗Φ∗←−α Φ∗Φ∗Φ∗
−→
β

Φ∗Φ∗Φ∗←−α Φ∗←−α
−→
β ⇐⇒

←−α Φ∗
−→
β

a

Φ∗Φ∗f ′

Φ∗ε
Φ∗a

ε

f ′

f ′
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I Conjecture 2.16. mΦ isomorphic with the matrix

mΦ(a, b) =
(
⇓(A× Bo)

)←−Φ×−→Φ(←−α ×−→β ,Φ)
which is equivalent to the matrix of the adjunction Φ~ a Φ~ : (⇑B)

−→Φ −→ (⇓A)
←−Φ , defined

Φ~←−α (u) = (⇓A)
←−Φ
(
←−α ,Φ#u

)
(14)

Φ~
−→
β (`) = (⇑B)

−→Φ
(

Φ#`,
−→
β
)

(15)

with the structure maps induced by composition with the structure maps a : Φ∗Φ∗←−α −→ ←−α
and b :

−→
β −→ Φ∗Φ∗

−→
β .

2.4.2 Tight extensions
But this loose extension is of little semantical value. E.g., when Φ is a partial ordering like in
(3), mΦ picks all pairs of a saturated lower set and a saturated upper set which are contained
in each other’s sets of bounds, but do not necessarily contain all such bounds. So it does not
capture the Dedekind cuts.

The tight extension ←→Φ brings us closer to the Dedekind cuts:
←→Φ (a, b) = {f ∈ mΦ(a, b) | f is mono, and f ′ is epi} (16)

Since (⇓A)
←−Φ and (⇑B)

−→Φ are regular categories, ←→Φ can be extracted from mΦ by two closure
operators: first extracting the mono factors, and then the epis of their transposes, or
equivalently the other way around. After the factorizations, in the first case the transpose of
the resulting epi will be mono; in the second the transpose of the resulting mono will be epi.
Either way, the process will stop.

The resulting matrix ←→Φ will be a reflective submatrix of mΦ. The completeness and the
generation will be inherited, but tight. We need to prove that the inferior limits that existed
in A and the superior limits that existed in B are preserved.

I Conjecture 2.17. For every matrix Φ: A −→ B, the tight extension ←→Φ : (⇓A)
←−Φ # (⇑B)

−→Φ

is the minimal bicompletion.

3 When does limit inferior boil down to limit?

By the couniversal property of the (Eilenberg-Moore) categories of algebras for a monad [16,
Part 0.6], there are always the comparison adjunctions between ⇓A and (⇑B)

−→Φ , and between
⇑B and (⇓A)

←−Φ , as displayed in the leftmost diagram of Fig. 4, since the monad ←−Φ and the
comonad −→Φ are induced by the adjunction Φ∗ a Φ∗ : ⇑B −→ ⇓A. When these comparisons
are equivalences, then this adjunction transfers to the two Eilenberg-Moore categories, as
indicated in the rightmost diagram of Fig. 4. Moreover, the inferior Φ-limits −→limΦ in B then
boil down to the suprema lim−→ in A, whereas the superior Φ-limits ←−limΦ in A boil down to
the infima lim←− in B. In terms of the concept mining example from the Introduction, the
structural components represented in (⇓A)

←−Φ can be computed as infima functions in ⇑B,
whereas the functional modules represented in (⇑B)

−→Φ can be computed as suprema of parts
in ⇓A. Connecting the extensions mΦ and ←→Φ along the equivalences ⇓A ' (⇑B)

−→Φ and
⇑B ' (⇓A)

←−Φ shows that all loose extensions are already tight.
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⇓A (⇓A)
←−Φ

⇑B (⇑B)
−→Φ

←−Φ

Φ∗ Φ∗a

Φ

U

⊥

−→Φ

V

Φ
⊥

⇓A (⇓A)
←−Φ

C C
←−Φ |C

D D
−→Φ |D

⇑B (⇑B)
−→Φ

←−Φ

Φ∗ Φ∗a

Φ

U

⊥
←−Φ |C

Φ∗|C Φ∗|Da

⊥

−→Φ |D

⊥

−→Φ

V

Φ
⊥

⇓A (⇓A)
←−Φ

⇑B (⇑B)
−→Φ

←−Φ

Φ∗ Φ∗a

−→Φ

a

Figure 4 Comparisons between the lim←−- and
−→limΦ-completions, and between the lim−→- and ←−limΦ-

completions.

I Proposition 3.1. For any matrix Φ: A# B, the extensions Φ∗ a Φ∗ : ⇑B −→ ⇓A are both
monadic if and only if the loose and the tight extensions coincide, i.e. mΦ ' ←→Φ .

The notion of monadicity [20, Sec. VI.7] here precisely captures the equivalences of interest,
as ⇑B ' (⇓A)

←−Φ means that Φ∗ is monadic and ⇓A ' (⇑B)
−→Φ means that Φ∗ is (co)monadic.

In this section, we study the monadicity of the extensions Φ∗ and Φ∗ in order to gain insight
into the situations when the inferior and superior limits boil down to the ordinary limits,
and the situations when they genuinely provide new information.

3.1 Monadicity workflow
As a reminder, we quote the Precise Monadicity Theorem in Appendix B. Intuitively, its
impact on the concrete instances of our situation is that it allows constructing the inferior
limits, which are in principle the suprema of lower bounds, as specific maximal cones into
the infima.

We begin describing a convenient setting of subcategories, as displayed in the middle in
Fig. 4. When Φ∗ : ⇑B −→ ⇓A restricts to a monadic functor D −→ C, so that D ' C

←−Φ |C , then
we have an embedding (⇓A)

←−Φ � ⇑B as indicated in the rightmost diagram in Fig. 4.
In the general framework of an adjunction as in Appendix B, items (a–b) of the Monadicity

Theorem say that the induced Eilenberg-Moore category CT is coreflective within the category
D whenever D has and U preserves reflexive U -split coequalizers. However, its converse does
not hold (see Example 3.6 and Prop. 3.8). The task is thus to spell out the full subcategories
C ⊆ ⇓A, D ⊆ ⇑B explicitly, even if we cannot apply the Monadicity Theorem to the setting
C = ⇓A, D = ⇑B. Towards this goal, and to simplify calculations with the algebras, we
propose the following lemma.

I Definition 3.2. An object B is said to be a retract of an object A if there exist morphisms
B −→ A −→ B whose composite is idB. For a full subcategory F ⊆ E , we denote by
RetrE(F) ⊆ E the full subcategory of all retracts in E of objects in F .

Notational conventions. For a functor G, we denote its full image by ImG. For a category
E and its full subcategories F ,F ′, we loosely use F ⊆ F ′ to denote that any object in F is
isomorphic in E to some object in F ′.
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I Lemma 3.3. Let F a U : B −→ A be an adjunction and T be its monad on A.

A AT

C CT |C

B B

T

F Ua

>

T |C

F |C Ua

>

A AT

B D

T

F Ua

>

L

K

>

1. Let C ⊆ A be a full subcategory such that ImU ⊆ C. If RetrA(ImU) ⊆ C, then the
canonical inclusion is an equivalence of categories CT |C ' AT .

2. Let D be the full subcategory that depicts the equivalence induced by the comparison functor
K : B −→ AT and its partial left adjoint L : AT ⇀ B (see e.g. [14, Sec. 1.11]). Then,
RetrB(ImF ) ⊆ D. In particular, RetrB(ImF ) ⊆ AT if the category AT is a (coreflective)
subcategory of B by L : AT � B.

The above lemma intuitively means
we need at most retracts of images under U in A, and that
we need at least retracts of images under F in B,

in order to obtain a monadic functor of the form AT ' D U |D−−→ C. In the later discussion,
we restrict an adjunction as the diagram below and calculate the category of T -algebras by
AT = (Retr(ImU))T ′ ⊇ (Retr(ImF )).

A Retr(ImU) AT

B Retr(ImF )

T

F Ua

T ′

F ′ U ′a

>

K′

where

T ′ = U ′F ′ = T |Retr(ImU) ,

F ′ = F |Retr(ImU) ,

U ′ = U |Retr(ImF ) ,

K ′ = K|Retr(ImF )

3.2 Completing constant matrices
Any set R can be viewed as a constant matrix R̃ : 1 # 1 by setting R̃(0, 0) = R, where
1 = {0}. We abuse notation and write R̃ as R. The extensions R∗ a R∗ : Seto −→ Set are thus
R∗X = R∗X = RX , and they induce the continuation monad ←−RX = RR

X on Set, and the
same comonad −→R on Seto.

Lem. B.2 in the Appendix B helps characterizing the monadicity of R∗ and R∗.

I Proposition 3.4. For a set R with at least 2 elements, the functor R∗ : Seto −→ Set is
monadic. When R is a singleton, then the monad ←−R on Set has a single algebra, and the
comonad −→R on Seto has a single coalgebra. When R is empty, then they have two algebras
and coalgebras respectively.

I Corollary 3.5. The loose extension of the constant matrix R is always in the form mR :
Set# Set with mR(X,Y ) = Set(X,Y ). The tight extension is
←→
R = mR : Set# Set when R has at least 2 elements
←→1 : 1# 1 with ←→1 (0, 0) = 1, where 1 = {0}
←→0 : 2# 2 with ←→0 (x, y) = 1 if and only if x ≤ y within 2 = {0 < 1}.
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3.3 Completing groups
Let C be a group G, viewed as a one-object category with invertible morphisms. The category
⇓G of presheaves is the category of right G-sets, or the category Go-Set of (left) Go-sets.
Indeed as a discrete fibration over the one-object category, the total category of the presheaf
is a set X with an action X × G −→ X. The adjunction H∗ a H∗ is given explicitly as
follows. We think of G as a (left G, right G)-set by the multiplication. For a right G-set X,
the (left) G-set H∗X is the set Go-Set(X,G) with the action (g · f)(i) = g

(
f(i)

)
. Similarly,

H∗Y = G-Set(Y,G) with the right action (f · g)(i) =
(
f(i)

)
g for a left G-set Y .

We assume later that the group G is nontrivial (i.e. G has at least two elements).

I Example 3.6. The diagram 0 −→ 1 ⇒ 1 + 1 displays an equalizer of a reflexive H∗-split
pair of left G-maps (i.e. a coequalizer in ⇑G). However, the image of this diagram under H∗
is not a coequalizer: 1←− 0⇔ 0.

I Proposition 3.7. We have ImH∗ ' {0} ∪ {GI | I ∈ Set} and Retr(ImH∗) ' {1} ∪
{G × I | I ∈ Set}, where GI is the exponential in Set with the pointwise multiplication
(g · f)(i) = g

(
f(i)

)
and G× I is the free G-set generated by the set I (i.e. g · 〈h, i〉 = 〈gh, i〉).

We denote by G-Set1,free the full subcategory {1} ∪ {G × I | I ∈ Set} ⊆ G-Set of a
singleton and free G-sets.

I Proposition 3.8. The functor H∗ : (G-Set1,free)o −→ Go-Set1,free is monadic. In particular,
the category (Go-Set)

←−
H of ←−H -algebras is equivalent to (G-Set1,free)o.

I Corollary 3.9. The loose extension of a nontrivial group is the canonical connection of its
left and right actions. The tight extension is the canonical extension of its free actions.

3.4 Completing posets
Let C be a poset (P,≤). We denote the poset of lower sets of P by ↓P , and the poset of
upper sets of P by ↑P .6 They are respectively the join and the meet completions. While P ’s
categorical supremum completion ⇓P = SetP

o

and its infimum completion ⇑P =
(
SetP

)o
are proper categories, its limit inferior completion ⇓P

←−
H , and its limit superior completion

⇑P
−→
H , although still constructed over Set — turn out to be both equivalent to a lattice, and

in particular to P ’s Dedekind-MacNeille completion lP .

I Lemma 3.10. The lattice of subobjects of the terminal object in ⇓P is isomorphic to
↓P . The lattice of quotient objects of the initial object of ⇑P is isomorphic to ↑P . The full
subcategories ↓P ⊆ ⇓P and ↑P ⊆ ⇑P contain all the representables.

I Lemma 3.11. The adjunction H∗ a H∗ : ⇑P −→ ⇓P restricts to an adjunction between
posets ↓P, ↑P (i.e. a Galois connection), which coincides with the {0, 1}-enriched construction.
Moreover, ImH∗ = Im(H∗|↓P ) and ImH∗ = Im(H∗|↑P ).

I Corollary 3.12. It holds Retr⇑P (ImH∗) = Im(H∗|↓P ).

Therefore, the category (⇓P )
←−
H is nothing more than the category of algebras for the

adjunction ↑P � ↓P .

I Proposition 3.13. There exist equivalences of categories (⇓P )
←−
H ' lP ' (⇑P )

−→
H .

I Corollary 3.14. The tight extension ←→P of a poset P coincides with its Dedekind-MacNeille
completion lP .

6 The poset ↓P is ordered by L ≤ L′ ⇐⇒ L ⊆ L′, whereas ↑P is ordered by U ≤ U ′ ⇐⇒ U ⊇ U ′.
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Φ = 1Φ1 + pΦp Φp = 0 Φp ≥ 1

Φ1 = 0
{0, 1}

{0, 1}o

a

Set

({1} ∪ {pUp | Up ∈ Set})o

a

Φ1 = 1
{1}

{1}o

a

Set

{1 + pUp | Up ∈ Set}o

a

Φ1 ≥ 2
Set

{1U1 | U1 ∈ Set}o

a

Set

(Zp-Set)o

a

Figure 5 The ←−limΦ-completion and the −→limΦ-completion of a Zp-vector Φ: 1# Zp.

3.5 Completing a Zp-vector
A vector is a matrix in the form Φ: 1 # B. We consider the vectors in B = Zp, viewed
as an additive cyclic group of prime order p. Every Zp-set X has an orbit-decomposition
X ∼= 1×X1 + Zp ×Xp where the action on 1 is trivial and the action on Zp is defined by
the addition.. We abbreviate the decomposition 1×X1 + Zp ×Xp as 1X1 + pXp.

I Lemma 3.15. Zp-Set(1X1 + pXp, 1Y1 + pYp) ∼= Y X1
1 (Y1 + pYp)Xp .

Hence for a vector Φ = 1Φ1 + pΦp, the adjunction Φ∗ a Φ∗ : (Zp-Set)o −→ Set is explicitly

Φ∗L ∼= (1Φ1 + pΦp)L (L ∈ Set),
Φ∗U ∼= ΦU1

1 (Φ1 + pΦp)Up (U = 1U1 + pUp ∈ Zp-Set).

I Lemma 3.16. Let f, g : U ⇒ U ′ be a reflexive pair in Zp-Set. The Zp-sets U,U ′ have
suitable isomorphisms to their orbit-decompositions such that the right square of the diagram

E U U ′

1E1 + pEp 1U1 + pUp 1U ′1 + pU ′p

∼=

e

∼=

f

g
∼=

1e1+pep 1f1+pfp

1g1+pgp

serially commutes for some maps f1, g1 : U1 ⇒ U ′1, fp, gp : Up ⇒ U ′p. Moreover, equalizers
E1

e1−→ U1, Ep
ep−→ Up of the pairs (f1, g1), (fp, gp), which induce an equalizer E e−→ U of the

pair (f, g) in Zp-Set, satisfy the condition of Lem. B.2.2.

Let us find full subcategories Retr(Im Φ∗) ⊆ C ⊆ Set and Retr(Im Φ∗) ⊆ D ⊆ (Zp-Set)o
to fit the scheme of Fig. 4.

I Proposition 3.17. Fig. 5 depicts a restriction of the adjunction Φ∗ a Φ∗ : (Zp-Set)o −→ Set
that makes both Φ∗ and Φ∗ monadic, without changing the categories of algebras:

Set C C
←−Φ |C Set

←−Φ

(Zp-Set)o D D
−→Φ |D (Zp-Seto)

−→Φ .

Φ∗ Φ∗a

'

a

'

Thus, the subcategories C and D are equivalent to the←−limΦ- and
−→limΦ-completions, respectively.
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Figure 6 Identified object: The external and the internal view

4 Conclusion

Deploying the categorical concept analysis of the unidentified object from Fig. 1 according
to the technical recipes proposed in this paper, our diligent reader has surely uncovered that
the mysterious device consists of two main structural components: the internal mechanism
of wheels and gears, and the external protection shell. On the other hand, the detailed
categorical analysis has surely displayed three main functional modules: moving, defending
from the outside attacks, and attacking from inside. As desired, the tight matrix then clearly
shows that the object must be a model of a man-powered armored combat vehicle from XV
century. It was conceived by Leonardo da Vinci, whose drawings are reproduced on Fig. 6.
The advances of category theory will undoubtedly permit us to better understand Leonardo’s
conceptualizations of warfare.

References
1 Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spectral analysis of

data. In Proceedings of the thirty-third annual ACM Symposium on Theory of Computing,
STOC’01, pages 619–626, New York, NY, USA, 2001. ACM.

2 Bernhard Banaschewski and Gunter Bruns. Categorical characterization of the MacNeille
completion. Archiv der Mathematik, 18(4):369–377, September 1967.

3 Michael Barr and Charles Wells. Toposes, Triples, and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.

4 Claudio Carpineto and Giovanni Romano. Concept Data Analysis: Theory and Applications.
John Wiley & Sons, 2004.

5 Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-
Interscience, 2000.

6 Bernhard Ganter, Gerd Stumme, and Rudolf Wille, editors. Formal Concept Analysis,
Foundations and Applications, volume 3626 of Lecture Notes in Computer Science. Springer,
2005.

7 Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg, 1999.

8 Peter Gärdenfors. The Geometry of Meaning: Semantics Based on Conceptual Spaces. MIT
Press, 2014.

9 Alexander Grothendieck. Revêtements étales et groupe fondamental (SGA 1), volume 224
of Lecture notes in mathematics. Springer-Verlag, 1971.

10 John R. Isbell. Small subcategories and completeness. Mathematical Systems Theory,
2(1):27–50, 1968.

11 Nicolas Jardine and Robin Sibson. Mathematical Taxonomy. John Wiley & Sons, Ltd,
1971.



T. Kataoka and D. Pavlovic 147

12 Peter Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 1982.

13 Ian T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer, 2002.
14 Gregory Max Kelly. Basic Concepts of Enriched Category Theory. Number 64 in London

Mathematical Society Lecture Notes. Cambridge University Press, 1982.
15 Joachim. Lambek. Completions of categories : seminar lectures given 1966 in Zurich.

Number 24 in Springer Lecture Notes in Mathematics. Springer-Verlag, 1966.
16 Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical Logic. Num-

ber 7 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.
17 Thomas K. Landauer, Danielle S. Mcnamara, Simon Dennis, and Walter Kintsch, editors.

Handbook of Latent Semantic Analysis. Lawrence Erlbaum Associates, 2007.
18 F. William Lawvere. Metric spaces, generalised logic, and closed categories. Rendiconti del

Seminario Matematico e Fisico di Milano, 43:135–166, 1973.
19 Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduc-

tion to Topos Theory. Universitext. Springer-Verlag, New York, 1992.
20 Saunders MacLane. Categories for the Working Mathematician. Number 5 in Graduate

Texts in Mathematics. Springer-Verlag, 1971.
21 Holbrook Mann MacNeille. Extensions of partially ordered sets. Proc. Nat. Acad. Sci. USA,

22(1):45–50, 1936.
22 Oded Maimon and Lior Rokach, editors. Data Mining and Knowledge Discovery Handbook,

2nd ed. Springer, 2010.
23 Dusko Pavlovic. Network as a computer: ranking paths to find flows. In Alexander

Razborov and Anatol Slissenko, editors, Proceedings of CSR 2008, volume 5010 of Lecture
Notes in Computer Science, pages 384–397. Springer Verlag, 2008. arxiv.org:0802.1306.

24 Dusko Pavlovic. On quantum statistics in data analysis. In Peter Bruza, editor, Quantum
Interaction 2008. AAAI, 2008. arxiv.org:0802.1296.

25 Dusko Pavlovic. Quantifying and qualifying trust: Spectral decomposition of trust networks.
In Pierpaolo Degano, Sandro Etalle, and Joshua Guttman, editors, Proceedings of FAST
2010, volume 6561 of Lecture Notes in Computer Science, pages 1–17. Springer Verlag, 2011.
arxiv.org:1011.5696.

26 Dusko Pavlovic. Relating toy models of quantum computation: comprehension, complemen-
tarity and dagger autonomous categories. E. Notes in Theor. Comp. Sci., 270(2):121–139,
2011. arxiv.org:1006.1011.

27 Dusko Pavlovic. Quantitative Concept Analysis. In Florent Domenach, Dmitry I. Ignatov,
and Jonas Poelmans, editors, Proceedings of ICFCA 2012, volume 7278 of Lecture Notes
in Artificial Intelligence, pages 260–277. Springer Verlag, 2012. arXiv:1204.5802.

28 Dusko Pavlovic. Bicompletions of distance matrices. In Bob Coecke, Luke Ong, and Prakash
Panangaden, editors, Computation, Logic, Games and Quantum Foundations. The Many
Facets of Samson Abramsky, volume 7860 of Lecture Notes in Computer Science, pages
291–310. Springer Verlag, 2013.

29 Dusko Pavlovic and Samson Abramsky. Specifying interaction categories. In E. Moggi and
G. Rosolini, editors, Category Theory and Computer Science 1997, volume 1290 of Lecture
Notes in Computer Science, pages 147–158. Springer Verlag, 1997.

30 Duško Pavlović and Martín Escardó. Calculus in coinductive form. In V. Pratt, editor,
Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science, pages
408–417. IEEE Computer Society, 1998.

31 F. Ricci, L. Rokach, B. Shapira, and P.B. Kantor. Recommender Systems Handbook.
Springer, 2010.

32 Ashok N. Srivastava and Mehran Sahami. Text Mining: Classification, Clustering, and
Applications. Data Mining and Knowledge Discovery Series. CRC Press, 2009.

CALCO’15



148 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

A Appendix: Proofs

Proof of Thm. 2.7. Suppose that X is a category with all limits inferior, and that G : C −→ X
is an arbitrary functor. We show that G has a unique extension G′ : (⇓C)

←−
H −→ X, such that

G = G′ ◦H ◦ ∇ (17)

where H : ⇓C −→ (⇓C)
←−
H , as defined on Fig. 3 instantiated to Φ = H, maps C-presheaves

to free ←−H -algebras, i.e. it is the left adjoint of the forgetful functor U : (⇓C)
←−
H −→ ⇓C. The

construction is illustrated on the following diagram.

(⇓C)
←−
H ←−γ

a←−−−
←−
H←−γ

⇓C

C

X
−→lim G ◦ −→ϕ

G′ G′

H

∇

G

Given an arbitrary ←−H -algebra ←−γ a←−−−
←−
H←−γ in ⇓C, we construct the equalizer of postsheaves

−→ϕ H∗
←−γ H∗

←−
H←−γ

H∗a

ηH∗←−γ

which is a coequalizer in ⇑C. Note that the ←−H -algebra a displays the presheaf ←−γ as
the coequalizer of the H∗-image of the pair

〈
H∗a, ηH∗←−γ

〉
. The ←−H -algebra a itself is the

coequalizer of the free ←−H -algebras over this image, and as the limit inferior as decomposed in
Proposition 2.5. We set the G′-image of the←−H -algebra a to be the limit inferior of the functor
F ϕ−→ C G−→ X. Equation (17) follows from Lem. 2.4. The fact that G′ preserves inferior
limits follows from the fact that every inferior limit cone H∗−→F λ−−→←−γ factors through any
structure map ←−H←−γ a−−→ ←−γ : the factorization is the composite H∗−→F λ−−→ ←−γ η−−→ H∗←−γ ,
which obviously boils down to λ when further postcomposed with a. The uniqueness follows
from Proposition 2.5. J

Proof of Lem. 2.10. Consider a natural transformation ψ ∈ (⇓A)
←−Φ
(

Φ∗Φ#a,Φ∗
−→
β
)
on the

left-hand side of (10). By (5) and by the naturality of ψ, for f ∈ A(x, a) the left-hand square
diagram in Fig. 7 must commute.

Φ∗Φ#a(a) ⇑B
(
Φ#a,Φ#a

)
⇑B
(

Φ#a,
−→
β
)

Φ∗
−→
β (a)

[
∇Φa

]
(∇Φa)

[
Φ∗
−→
β
]

(∇Φa)

Φ∗Φ#a(x) ⇑B
(
Φ#x,Φ#a

)
⇑B
(

Φ#x,
−→
β
)

Φ∗
−→
β (x)

[
∇Φa

]
(∇Φx)

[
Φ∗
−→
β
]

(∇Φx)

Φ∗Φ#a(f)

ψa

(−)◦f (−)◦f Φ∗
−→
β (f)

[ψ]

[
∇Φa

]
f̂

[
Φ∗
−→
β
]
f̂

ψx

[ψ]

Figure 7 Matrix Yoneda squares

Recall that ←−Φ-algebras like ∇Φa,Φ∗
−→
β : Ao −→ Set always canonically extend to functors[

∇Φa
]
−→
[
Φ∗
−→
β
]

: (⇓A)o←−Φ −→ Set , and that ←−Φ-algebra homomorphism ψ : ∇Φa −→ Φ∗
−→
β

extend to
[
ψ
]
:
[
∇Φa

]
−→
[
Φ∗
−→
β
]
. It follows that a ←−Φ-algebra homomorphism ψ must be
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natural with respect to all homomorphisms between free ←−Φ-algebras, and not just with
respect to those arising from A.

In particular, consider the natural isomorphism

⇑B
(
Φ#x,Φ#a

) (a)= Φ∗Φ#a(x)
(b)∼= ⇓A

(
∇x,Φ∗Φ#a

) (c)= (⇓A)o←−Φ (∇Φa,∇Φx) (18)

where (a) is based on (5), (b) on the usual Yoneda lemma, and (c) on the definition of the
Kleisli category (⇓A)←−Φ . Every f ∈ ⇑B

(
Φ#x,Φ#a

)
thus induces a unique homomorphism

f̂ ∈ (⇓A)o←−Φ (∇Φa,∇Φx), and vice versa. The naturality condition on
[
ψ
]
now implies that

the right-hand square on Fig. 7 must commute, which implies[
ψ
]
∇Φx

(
f̂
)

=
[
ψ
]
∇Φx
◦
[
∇Φa

]
f̂ (id∇Φa) =

[
Φ∗
−→
β
]
f̂◦
[
ψ
]
∇Φa

(id∇Φa) =
[
Φ∗
−→
β
]
f̂
([

Ψ
])

(19)

where
[
Ψ
]

=
[
ψ
]
∇Φa

(id∇Φa). Hence the bijection between the natural transformations[
ψ
]
:
[
∇Φa

]
−→
[
Φ∗
−→
β
]
and the elements

[
Ψ
]
of
[
Φ∗
−→
β
]

(∇Φa). The restriction to ψ : ∇Φa −→
Φ∗
−→
β of

[
ψ
]
must be coherent with respect to the natural bijection (18), which means that

ψ must be natural with respect to f ∈ ⇑B
(
Φ#x,Φ#a

)
just like

[
ψ
]
was with respect to

f̂ ∈ (⇓A)o←−Φ (∇Φa,∇Φx). The naturality of the left-hand square in Fig. 7 now gives

ψx (f) = ψx ◦ ∇Φaf (idΦ#a) = Φ∗
−→
β (f) ◦ ψa (idΦ#a) = Φ∗

−→
β (f)Ψ (20)

where Ψ = ψa (idΦ#a). Hence the bijection between the ←−Φ-algebra homomorphisms ψ ∈
(⇓A)

←−Φ
(
∇Φa,Φ∗

−→
β
)
and the elements Ψ of Φ∗

−→
β (a), as claimed in (10). Claim (11) is proven

dually. J

Proof of Lem. 3.3.
1. Let A h←− UFA be a T -algebra. By the unit law of Eilenberg-Moore algebras, we have a

retract A
ηA
� UFA

h
� A. In particular, the underlying object A of the algebra is a retract

of an image under U .
2. Firstly, we shall show that

D =
{
B ∈ B

∣∣∣ B FUB FUFUB
εB

FUεB

εFUB
is a coequalizer

}
(21)

as a full subcategory of B. Recall that KB = (UB UεB←−−− UFUB). For a T -algebra
A

h←− UFA, its image under L : AT ⇀ B is defined by the representability:

B
(
L(A h←− UFA), B

) ∼= AT ((A h←− UFA), (UB UεB←−−− UFUB)
)

∼=
{
f ∈ B(FA,B)

∣∣∣ B FA FUFA
f Fh

εFA
commutes

}
,

where the latter isomorphism is essentially shown at the item (a) of the precise monadicity
theorem. In particular, a counit LKB −→ B of the partial adjunction L a K (exists and)
is an isomorphism if and only if the diagram in (21) is a equalizer in B, because the above
bijection maps idKB ∈ AT (KB,KB) to εB ∈ B(FUB,B).
Secondly, we claim that ImF ⊆ D as full subcategories of B. It is obvious as the following
is a split coequalizer diagram:

FA FUFA FUFUFA .

FηA

εFA

FUFηA

FUεFA

εFUFA
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Finally, we shall prove that the subcategory D ⊆ B is closed under taking retracts. Let
D be an object of D, and B

s
� D

r
� B be a retract of D in B. We have shown that the

upper row of the following diagram is a coequalizer in B.

D FUD FUFUD

B FUB FUFUB

εD
FUεD

εFUD
s r

εB

FUs FUr
FUεB

εFUB

FUFUs FUFUr

The squares commutes serially, and all the columns are retracts. It is a straightforward
consequence that the lower row of the diagram is also a coequalizer. J

I Lemma A.1. Let X be a G-set and J be a set. Any G-map f : X −→ G × J to the free
G-set generated by J is a composite X ∼= G× I idG×k−−−−→ G× J for some k : I −→ J in Set.

Proof of Lem. A.1. Let I = f−1({e} × J). The action of X induces an isomorphism
X ∼= G× I of G-sets. J

I Lemma A.2. A retract of a singleton in G-Set is a singleton. A retract of a free G-set is
free.

Proof of Lem. A.2. The first claim is obvious. The latter claim is by Lem. A.1. J

Proof of Prop. 3.7. Let X be a right G-set. If there exists a right G-map X −→ G, there
exists an isomorphism X ∼= I ×G for some set I by Lem. A.1. Then, we have a bijection

H∗X = Go-Set(X,G) ∼= Go-Set(I ×G,G) ∼= Set(I,G) = GI ,

which is moreover an isomorphism of left G-sets. If X does not have a right G-map X −→ G,
then we have H∗X = 0. For instance, letting X = 1 gives H∗1 = 0 since |G| ≥ 2. J

Proof of Prop. 3.8. By the Monadicity Theorem, this proposition reduces to the following
two lemmas. J

I Lemma A.3. The following hold.
1. The category G-Set1,free has reflexive equalizers.
2. The functor H∗ : (G-Set1,free)o −→ Go-Set1,free preserves reflexive coequalizers.

Proof. By Lem. A.2, a reflexive pair in G-Set1,free is either 1⇒ 1 or G× I ⇒ G× J . The
pair 1⇒ 1 trivially has an equalizer that is preserved by any functor.

Let r : G×J −→ G×I be a common retraction inG-Set1,free of the pair (f, h) : G×I ⇒ G×J .
We may assume r = idG × r′ for some map r′ : J −→ I by Lem. A.1. Define a map f ′ : I −→ J

by 〈gi, f ′(i)〉 = f(〈e, i〉) for each i ∈ I where it turns out to hold gi = e since

〈e, i〉 = r
(
f(〈e, i〉)

)
= r
(
〈gi, f ′(i)〉

)
=
〈
gi, r

′(f ′(i))〉 .
Moreover for any g ∈ G, it holds

f(〈g, i〉) = f(g · 〈e, i〉) = g · f(〈e, i〉) = g · 〈e, f ′(i)〉 = 〈g, f ′(i)〉 .

Therefore, there exist maps f ′, h′ : I ⇒ J such that f = idG × f ′, h = idG × h′, and r′ is a
common retraction of the pair (f ′, h′) in Set.
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Using an equalizer E −→ I ⇒ J in Set, we have an equalizer G × E −→ G × I ⇒ G × J
in G-Set1,free. We shall show that this (co)equalizer is preserved by H∗ : (G-Set1,free)o −→
Go-Set1,free, i.e. the diagram

GE ←− GI ⇔ GJ

is a coequalizer of right G-sets. Their underlying sets form a coequalizer diagram in Set
because the functor |G|(−) : Seto −→ Set preserves reflexive coequalizers for |G| ≥ 2 by
Lem. B.2. Hence, the diagram is also a coequalizer in Go-Set. J

I Lemma A.4. The functor H∗ : (G-Set1,free)o −→ Go-Set1,free reflects isomorphisms.

Proof. Let f : X −→ Y be a morphism in G-Set1,free such that H∗f : H∗Y −→ H∗X is an
isomorphism. There are three cases of the G-map f :

1 −→ 1 , G× I −→ 1 , G× I −→ G× J .

The first two cases are trivial. For the last case, we may assume that f = idG × k for some
map k : I −→ J by Lem. A.1. Then, the right G-bijection H∗f : H∗(G× J) −→ H∗(G× I) can
be written as Gk : GJ −→ GI . By |G| ≥ 2, the map k is a bijection, which shows that the
G-map f = idG × k is an isomorphism. J

Proof of Lem. 3.10. The terminal object in ⇓P is a constant presheaf 1. A presheaf←−α ∈ ⇓P
is a subobject of the presheaf 1 if and only if ←−α � 1 in Set for any x ∈ P .

A representable presheaf ∇x is a subobject of 1, since (∇x)(y) = P (y, x)� 1. J

Proof of Lem. 3.11. Firstly, we shall show that ImH∗ ⊆ ↑P . Let ←−α ∈ ⇓P be a presheaf.
We shall show H∗←−α ∈ ↑P . The set (H∗←−α )(x) = ⇓P (←−α ,∇x) has at most one element for
any x ∈ P , since ∇x is a subobject of a terminal object 1 ∈ ⇓P . In particular, the postsheaf
H∗←−α ∈ ⇑P is an upper set of P .

Dually, we have ImH∗ ⊆ ↓P . Then, the adjunction H∗ a H∗ restricts as

↓P ⇓P

↑P ⇑P .

H∗|↓P H∗|↑Pa H∗ H∗a

It is obvious by definition that the restricted adjunction coincides with the {0, 1}-enriched
construction.

The claim ImH∗ = Im(H∗|↓P ) follows from that the embedding ↓P � ⇓P has a left
adjoint ⇓P −→ ↓P , which maps a presheaf ←−α to the image of ←−α −→ 1. Just for reference, we
describe the following elementary proof, which boils down to the above argument.

A presheaf ←−α can be written as a canonical colimit ←−α = lim−→i∈I∇ai. Let L ⊆ P be the
image of ←−α −→ 1, i.e.

L =
{
x ∈ P

∣∣←−α (x) is nonempty
}

=
⋃
i∈|I|

{x ∈ P | x ≤ ai} =
⋃
i∈|I|

∇ai .

We shall show that this lower set L ∈ ↓P satisfies H∗L = H∗←−α . We have

H∗L = H∗
⋃
i∈|I|

∇ai =
⋂
i∈|I|

H∗∇ai =
⋂
i∈|I|

∆ai ∈ ↑P ,

H∗←−α = H∗ lim−→
i∈I
∇ai = lim−→

i∈I
H∗∇ai = lim−→

i∈I
∆ai ∈ ⇑P

CALCO’15



152 Towards Concept Analysis in Categories: Limit Superior and Limit Inferior as Algebras

by the adjunctions H∗|↓P a H∗|↑P and H∗ a H∗, respectively. The colimit lim−→i∈I ∆ai in ⇑P
is a limit in SetP , and it is just a product in SetP because the objects ∆ai are subobjects of
1 in SetP . Therefore, H∗L = H∗←−α . J

Proof of Cor. 3.12. A retract of an upper set U ⊆ P is also an upper set, because the
retract is always U itself. Thus,

Retr⇑P (ImH∗) = Retr⇑P (Im(H∗|↓P )) by Lem. 3.11
= Im(H∗|↓P ) by Im(H∗|↓P ) ⊆ ↑P . J

Proof of Prop. 3.13. By Lem. 3.11 and Cor. 3.12. J

Proof of Lem. 3.15. For a Zp-set Y = 1Y1 + pYp, an element y ∈ Y forms a Zp-map
y : 1 −→ Y if and only if y ∈ 1Y1. For the free Zp-set p, an element y ∈ Y bijectively
corresponds to a Zp-map p −→ Y . Since an orbit-decomposition is a coproduct,

Zp-Set(1X1 + pXp, 1Y1 + pYp) ∼=
(
Zp-Set(1, 1Y1 + pYp)

)X1(Zp-Set(p, 1Y1 + pYp)
)Xp

∼= Y X1
1 (Y1 + pYp)Xp . J

Proof of Lem. 3.16. Let r be a common retraction of the pair (f, g), and I = Im f ∪ Im g ∼=
1I1+pIp. By the existence of retraction, we have f = f ′1+f ′p : 1U1+pUp −→ 1U ′1+pU ′p for some
Zp-maps f ′1, f ′p, and similar for g. Hence, there exists r|I = r′1 + r′p : 1I1 + pIp −→ 1U1 + pUp.
We may assume r′1 + r′p = 1r1 + prp by modifying the coercing isomorphism U ′ ∼= 1U ′1 + pU ′p
on I ⊆ U ′. Under the assumption, we obtain f ′1 + f ′p = 1f1 + pfp and g′1 + g′p = 1g1 + pgp.

The reflexive equalizer in Zp-Set is also a reflexive equalizer in Set, which induces the
following pullback of injections in Set by Lem. B.2.1.

E1 + pEp U1 + pUp

U1 + pUp U ′1 + pU ′p .

e1+pep

e1+pep

f1+pfp

g1+pgp

Changing the base by maps U ′1 −→ U ′1 + pU ′p, U ′p −→ U ′1 + pU ′p concludes the proof. J

Proof of Prop. 3.17. It is easy to check the full subcategories C,D contain all retracts of
images. Then, by Lem. 3.3.1, we have only to show that the restrictions Φ∗|D : D −→ C,
Φ∗|C : C −→ D are monadic functors. By the Monadicity Theorem, it follows from the following
two lemmas that the functor Φ∗|D is monadic. The comonadicity of Φ∗|C is shown similarly
to the comonadicity of the restriction of R∗ : Set −→ Seto (Prop. 3.4) for R = Φ1 + pΦp. J

I Lemma A.5. For the adjunction Φ∗|C a Φ∗|D : D −→ C in Fig. 5, the category D has and
the functor Φ∗|D preserves reflexive coequalizers.

Proof. By Lem. 3.16, an equalizer in Zp-Set of a reflexive pair in Do ⊆ Zp-Set can be taken
as

E U U ′

1E1 + pEp 1U1 + pUp 1U ′1 + pU ′p

e
f

g

1e1+pep 1f1+pfp

1g1+pgp
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for some equalizers

E1 U1 U ′1
e1

f1

g1
, Ep Up U ′p

ep
fp

gp
.

It is easy to show that 1E1 + pEp ∈ D. For example, if Φ = 1 + pΦp then U1 = U ′1 = 1,
which implies E1 = 1.

By Lem. B.2.2, the diagrams

ΦE1
1 ΦU1

1 ΦU
′
1

1
Φe11

Φf11

Φg11

, (Φ1 + pΦp)Ep (Φ1 + pΦp)Up (Φ1 + pΦp)U
′
p

(Φ1+pΦp)ep (Φ1+pΦp)fp

(Φ1+pΦp)gp

are split coequalizers. Hence, their pointwise product

Φ∗(1E1 + pEp) Φ∗(1U1 + pUp) Φ∗(1U ′1 + pU ′p)
Φ∗(1e1+pep) Φ∗(1f1+pfp)

Φ∗(1g1+pgp)

is a (split) coequalizer. J

I Lemma A.6. The right adjoint functor Φ∗|D : D −→ C in Fig. 5 reflects isomorphisms.

Proof. Let f : U −→ U ′ be a Zp-map. In general, f is of the form

1U1 + p(Up,1 + Up,p) −→ 1U ′1 + pU ′p

induced by maps f1 : U1 −→ U ′1, g : Up,1 −→ U ′1, h : Up,p −→ pU ′p up to isomorphisms, by
Lem. 3.15. Modify the embedding pUp,p� U , and we may assume further that the map h is
induced by a map fp : Up,p −→ U ′p. Then, f = [id1 × f1, ! × g, idp × fp] where ! : p −→ 1 is a
unique Zp-map.

Assume that U,U ′ ∈ D and that Φ∗f : Φ∗U ′ −→ Φ∗U is a bijection. We have only to prove
the bijectivity of the maps f1, fp and Up,1 = 0. The map Φ∗f factors through an injection as
the following diagram:

ΦU1
1 ΦUp,11 (Φ1 + pΦp)Up,p

ΦU
′
1

1 (Φ1 + pΦp)U
′
p ΦU1

1 (Φ1 + pΦp)Up,1(Φ1 + pΦp)Up,p .

〈Φf11 ,Φg1〉×(Φ1+pΦp)fp

Φ∗f

Since the injection must be a bijection, we have

ΦU1
1 (Φ1 + pΦp)Up,p = 0 or Φp = 0 or Up,1 = 0 .

The rest is straightforward for each Φ: 1# Zp.
For example, let Φ = pΦp. The full subcategory D ⊆ (Zp-Set)o contains only Zp-sets

with trivial actions, i.e. D ⊆ Seto ⊆ (Zp-Set)o. In particular, we have Up,1 = Up,p = 0, and
the claim reduces to the monadicity of a restriction of the functor Φ(−)

1 : Seto −→ Set. J
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B Appendix: General propositions

I Proposition B.1 (Precise monadicity theorem). Let U : D −→ C be a functor that has a left
adjoint F : C −→ D, and T = U ◦ F be the induced monad.

C CT

D

T

F Ua

FT

UT

>

L

K
>

KD = (UD UεD←−−− UFUD) ,

L(C h←− UFC) ←− FC
Fh
⇔
εFC

FUFC is a coequalizer.

(a) The comparison functor K : D −→ CT has a left adjoint L : CT −→ D if the category D has
reflexive U -split coequalizers.

(b) The functor L is full and faithful if D has and U preserves reflexive U -split coequalizers.
(c) The comparison functor K is full and faithful if U reflects isomorphisms [3, Sec. 3.3].
In particular, the right adjoint functor U is monadic if U creates reflexive U -split coequalizers.

Conversely, for a monad T , the forgetful functor UT : CT −→ C creates UT -split coequaliz-
ers.

The statements and the proof of the following lemma is inspired by the proof of the
monadicity of powerset functors Ω(−) (see e.g. [3, Sec. 5.1]).

I Lemma B.2. Let X,Y be sets, and f, g : X ⇒ Y be maps.
1. If the pair (f, g) is reflexive, then the maps f, g are injections and the diagram

Z X

X Y

e

e

f

g

(22)

is a pullback for an equalizer Z e−→ X of the pair (f, g).
2. Let R be a nonempty set and e : Z −→ X be a map such that the above diagram (22) is a

pullback. If the map f is an injection, then RZ Re←−− RX
Rf

⇔
Rg

RY is a split coequalizer. In

particular, the functor R(−) : Seto −→ Set preserves such coequalizers.

Proof of Lem. B.2.
1. Obvious.
2. Firstly, the map e is an injection, because f is. Fix an element r ∈ R. Since the maps

e, f are injective, we may and shall define maps RZ er−→ RX
fr−→ RY by

er(k)(x) =
{
k(z) if x = e(z),
r otherwise

fr(h)(y) =
{
h(x) if y = f(x),
r otherwise

where h : X −→ R and k : Z −→ R. The maps give a splitting

RZ RX RY ,
er

Re

fr

Rf

Rg
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i.e. the diagrams

RZ

RZ RX

id

er

Re

RX

RX RY

id

fr

Rf

RZ RX

RX RY

er

Re

fr

Rf

commute. J
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