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Abstract
Modules over monads (or: actions of monads on endofunctors) are structures in which a monad
interacts with an endofunctor, composed either on the left or on the right. Although usually not
explicitly identified as such, modules appear in many contexts in programming and semantics.
In this paper, we investigate the elementary theory of modules. In particular, we identify the
monad freely generated by a right module as a generalisation of Moggi’s resumption monad
and characterise its algebras, extending previous results by Hyland, Plotkin and Power, and by
Filinski and Støvring. Moreover, we discuss a connection between modules and algebraic effects:
left modules have a similar feeling to Eilenberg–Moore algebras, and can be seen as handlers
that are natural in the variables, while right modules can be seen as functions that run effectful
computations in an appropriate context (such as an initial state for a stateful computation).
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1 Introduction

Given a monad M , a right module over M (or: an M -module) is an endofunctor S together
with a natural transformation (called an action)
−→µ : SM → S

coherent with the monadic structure of M . Dually, a left module over M is an endofunctor L
together with a natural transformation
←−µ : ML→ L

also coherent with the monadic structure of M .
Modules over monads are special cases of modules over monoids in monoidal categories

(as monads are monoids in categories of endofunctors). They are discussed, for example, by
Dubuc [10] and Mac Lane [23, Sec. VI.4]), as well as, in a more general setting, by Street [32].
In this paper, by developing some elementary theory of modules, we show their connections
to some constructions in semantics of programming languages and the theory of algebraic
data structures.

As our primary result, we describe the monad freely generated by a right M -module S.
The functor part of this monad is given by the composition MS∗, where S∗ is the free
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monad generated by S as an endofunctor. We also introduce the notion of algebra for a
module, which is a coherent pair consisting of an S-algebra (for S as an endofunctor) and
an Eilenberg–Moore M -algebra. We observe that algebras for a right M -module S coincide
with Eilenberg–Moore algebras for the monad MS∗.

These considerations have some practical aspects as well. The monad MS∗ is a gen-
eralisation of Moggi’s [27] resumption monad M(GM)∗ for an endofunctor G, which has
applications in semantics and functional programming. The universal property of MS∗

subsumes Hyland, Plotkin, and Power’s [20] result that M(GM)∗ is the coproduct of M and
G∗ in the category of monads, or Filinski and Støvring’s [13] construction of data types that
interleave data and monadic effects. Generalising the above constructions to the setting of
modules gives us new, interesting instances.

In passing, we investigate more of the theory of modules. We give examples and general
constructions, which suggest the ubiquity of modules. For instance, every (left or right)
adjoint comonad is a module over its adjoint monad, and every endofunctor is a module
over its codensity monad. We show that a large portion of the theory of monads can be
transported to the theory of modules. For example, the connection between monads and
adjunctions is lifted to the connection between modules and adjunctions paired with a
functor, while the correspondence between distributive laws and liftings is extended to the
correspondence between their obvious counterparts.

2 Modules over monads

2.1 Preliminaries

We work in a base category C , which is locally small and complete. We reserve A,B,C,X, Y, Z
to denote objects in categories, while f, g, h denote morphisms and natural transformations.
Functors are usually denoted as F,U,G,H,M, T . We reserve M , T for monads, and F , U
for left and right adjoints respectively. To avoid confusion, we sometimes add superscripts.
Given functors G,G′, H,H ′ and two natural transformations g : G→ G′ and h : H → H ′,
we denote the composition of endofunctors by juxtaposition (for example, GH). The parallel
composition of g and h is also denoted by juxtaposition, as in gh : GH → G′H ′.

For an endofunctor G, we write Alg(G) for the category of G-algebras, Mnd for the
category of monads and monad morphisms over a base category, and EM(M) for the
category of Eilenberg–Moore algebras for a monad M . We always denote the unit and the
multiplication of a monad as η and µ respectively. If there is more than one monad in context,
we add superscripts. We follow the standard abuse of notation and denote a monad by its
underlying endofunctor.

Given an endofunctor G : C → C , we denote the free monad generated by G (if it
exists) as G∗, and the canonical injection by emb : G→ G∗. For a monad T and a natural
transformation g : G→ T , we denote by JgK : G∗ → T the monad morphism given by the
freeness of G∗, that is, the unique monad morphism JgK with the property that g = JgK · emb.
Note that if the base category has binary coproducts, the functor part of G∗ is given by
G∗A = µX.GX+A, where µX.HX denotes the carrier of the initialH-algebra (see Kelly [21]).
In such a case, the free monad arises from the adjunction between FAlg : C → Alg(G) and
UAlg : Alg(G) → C , which we write as FAlg a UAlg : C ⇀ Alg(G). This adjunction is
strictly monadic, which means that the canonical comparison functor K : Alg(G)→ EM(G∗)
is an isomorphism.
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2.2 Modules defined
I Definition 1. LetM be a monad. An endofunctor S together with a natural transformation
(an action) −→µ : SM → S is called a right M-module (or: a right module over M) if the
following diagrams commute:

SMM SM

SM S

Sµ

−→µ−→µ M
−→µ

S SM

S

Sη

−→µ
id

We define a morphism between an M -module S and a M ′-module S′ as a pair 〈m, s〉,
where m : M →M ′ is a monad morphism and s : S → S′ is a natural transformation such
that the following diagram commutes:

SM S

S′M ′ S′

−→µ S

ssm

−→µ S′

We refer to the category of all right modules over monads as Mod. Its objects are pairs
〈M,S〉, whereM is a monad and S is anM -module. Arrows are given by morphisms between
modules.

Similarly, we define a left M-module as an endofunctor L together with ←−µ : ML → L

such that the obvious analogues of the diagrams above commute.

I Example 2. The following are examples of general constructions of right modules (most
of them dualise easily to the case of left modules):
1. Let M be a monad. Then, M is itself an M -module with the action given by the

multiplication µM : MM →M .
2. Let m : M → T be a monad morphism. Then, T is an M -module with the action given

by µT · Tm : TM → T .
3. Let S be an M -module and G be an endofunctor. Then, GS is also an M -module with

the action given by G−→µ : GSM → GS. An important instance of this construction is
when the original module is the monad itself, that is, when the module is given by GM .

4. With the definitions as above, let λ : TM →MT be a distributive law between monads.
Then, the composition ST is a module of the induced monad MT . The action is given
by (−→µ µT ) · SλT : STMT →MT .

5. If S and Q are two M -modules, their coproduct S + Q is also an M -module with the
action defined componentwise.

6. Let F be an endofunctor with a right adjoint U . Then, F is an UF -module with the
action given by εF : FUF → F , where ε is the counit of the adjunction.

7. Let M be a monad with a left adjoint W . In such a case, W is a comonad (the situation
is dual to the one observed by Eilenberg and Moore [12], in which M has a right adjoint).
Also, W is an M -module with the action given by cW ·WµW ·WMu : WM →W , where
u : Id→MW is the unit and c : WM → Id is the counit of the adjunction.

I Example 3. The last two constructions from Example 2 can be illustrated with the
‘currying’ adjunction native to cartesian closed categories, A× - a (-)A, for a fixed object A.
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As for Example 2 (6), this adjunction gives rise to the state monad (A × -)A, which can
be seen as a model of stateful computations. The action of the module given by the left
adjoint is equal to −→µX = evalAA×X : A× (A×X)A → A×X, where evalAB : A×BA → B is
the evaluation morphism for exponentials. Alternatively, using the fact that simply-typed
λ-calculus is the internal language of CCCs, one could say −→µX = λ〈a, f〉:A× (A×X)A. f a.
Intuitively, −→µ takes as its arguments an initial state and a stateful computation, and returns
the final state paired with the final answer. In other words, it is a morphism that ‘executes’
the stateful computation.

Example 2 (7) comes from the fact that (-)A is a monad, known in the functional
programming community as the reader monad. Its multiplication (XA)A → XA is given
by the diagonal λf :(XA)A. λa:A. f a a. Its adjoint comonad (known as the environment
comonad) A× - is a (-)A-module. The action of this module −→µX : A×XA → A×X is given
as λ〈a, f〉:A×XA. 〈a, f a〉.

I Example 4. For all n ≥ 1, the Set functor of lists with at least n elements is a module of
the non-empty list monad (the free semigroup monad).

I Example 5. An Eilenberg–Moore algebra 〈A, f : MA→ A〉 can be understood as a leftM -
module given by the constant endofunctor CA and a natural transformation f : MCA → CA.
Indeed, in the literature, Eilenberg–Moore algebras are sometimes called ‘modules’.

We can consider Cat (the category of all categories up to a certain size) as a 2-category:
0-cells are categories, 1-cells are functors, and 2-cells are natural transformations. We consider
different opposites of Cat: the op-dual Catop obtained by reversing 1-cells, the co-dual
Catco obtained by reversing 2-cells, and the bidual Catcoop obtained by reversing both. For
example, monads and comonads are mutually co-dual concepts (that is, a monad in Catco is
a comonad in Cat), while both are self-op-dual (that is, a monad is an opmonad, while a
comonad is a co-opmonad). Left and right modules are mutually op-dual concepts, that is, a
left module is a right opmodule, while a right module is a left opmodule. In the obvious way,
co-duality gives us the concepts of left and right comodules over comonads.

I Example 6. Given an endofunctor G : C → C , its codensity monad is given by the right
Kan extension of G along itself:

C C

C

⇑κ

G

G
RanGG

In this case, G is a left module of RanGG with the natural transformation κ : (RanGG)G→ G

being the module action. Intuitively, we can see the codensity monad as a generalised type of
computations in continuation-passing style. The transformation κ executes the computation
by supplying it with the identity continuation. Moreover, if G happens to have a left
adjoint F , the codensity monad is equal to GF , and the situation simplifies to the op-dual of
Example 2 (6).

Examples 3 and 6 suggest that some actions of modules can be intuitively seen as functions
that run computations, while the functor parts provide context for the execution. We say
more about this view on modules in Section 5.

CALCO’15
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2.3 Adjunctions paired with a functor
Monads and pairs of adjoint functors are closely related: every adjunction induces a monad,
and every monad is induced by a number of adjunctions. This can be extended to modules
over monads: M -modules are induced by adjunctions that induce M together with an
additional functor. The only condition imposed on the functor is that it has the same type
as the right adjoint (for right modules) or the left adjoint (for left modules). In detail:

I Theorem 7. Let F : C → D be a functor with a right adjoint U : D → C . We denote the
unit and the counit as η and ε respectively. Then:

Let L : C → D be a functor. Then, UL is a left UF -module with the action given as
UεL : UFUL→ UL.
Let R : D → C be a functor. Then, RF is a right UF -module with the action given as
RεF : RFUF → RF .

Conversely, every M -module arises from an adjunction that induces M together with
a functor of the appropriate type. In the case of left modules, this fact was noticed by
Dubuc [10]; we complement it with a suitable counterpart of the Kleisli construction for right
modules.

I Theorem 8. Let FEM a UEM be the Eilenberg–Moore adjunction for a monad M on a
category C . For a left M -module S, we define a functor L : C → EM(M) as follows:

LA = 〈SA, MSA
←−µA−−→ SA〉

L(f : A→ B) = SA
Sf−−→ SB

The induced module UEML is equal to S.

I Theorem 9. Let FKl a UKl be the Kleisli adjunction for a monad M on a category C .
For a right M -module S, we define a functor R : Kleisli(M)→ C as follows:

RA = SA

R(f : A→MB) = SA
Sf−−→ SMB

−→µB−−→ SB

The induced module RFKl is equal to S.

2.4 Distributive laws and liftings
Since most results about monads boil down to results about adjunctions, the construction
above suggests that we can generalise much of the theory of monads to the theory of
modules. As an example, we now consider distributive laws and liftings, introduced and
proved equivalent by Beck [8] (see also Barr and Wells [7, Sec. 9.2] or Tanaka’s PhD
dissertation [33]):

I Definition 10. A distributive law of an endofunctor G over a monad M is a natural
transformation λ : GM → MG such that λ · Gµ = µG · Mλ · λM and λ · Gη = ηG.
Similarly, a distributive law of a monad T over an endofunctor G is a natural transformation
λ : TG→ GT such that λ · µG = Gµ · λG ·Mλ and λ · ηG = Gη. A distributive law between
monads T and M is a natural transformation λ : TM →MT that is both a distributive law
of T as a endofunctor over M as a monad and T as a monad over M as an endofunctor.
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I Definition 11. Given a monad T and an endofunctor G, we call an endofunctor G :
EM(T ) → EM(T ) a lifting of G to EM(T ) if UEMG = GUEM, where U : EM(T ) → C

is the forgetful functor. Let M be a monad. We call a monad M : EM(T ) → EM(T ) a
lifting of M (as a monad) if it is a lifting as an endofunctor and additionally the identities
µMUEM = UEMµM and ηMUEM = UEMηM hold.

I Theorem 12. Let M and T be monads, and G be an endofunctor. Liftings of G to EM(T )
are in 1–1 correspondence with distributive laws of T over G. Moreover, liftings of M (as a
monad) are in 1–1 correspondence with distributive laws of T over M (as monads).

We extend these notions and the correspondence to include modules:

I Definition 13. A distributive law of a monad T over a right M -module S consists of a
distributive law between monads λ : TM →MT together with a distributive law of a monad
over an endofunctor

−→
λ : TS → ST such that

−→
λ · T−→µ = −→µ T · Sλ ·

−→
λ M .

I Definition 14. Let T be a monad and S be a right M -module. An Eilenberg–Moore lifting
of S as a module consists of M and S together with a natural transformation −→µ S : SM → S

such that:
M : EM(T )→ EM(T ) is a lifting of M as a monad,
S : EM(T )→ EM(T ) is a lifting of S as a functor,
S together with −→µ S form a right M -module,
it is the case that UEM−→µ S = −→µ SUEM.

I Theorem 15. Distributive laws of a monad T over an M -module S and Eilenberg–Moore
liftings of S are in 1–1 correspondence.

3 Resumptions: monads freely generated by modules

In this section, we introduce the monadMS∗ freely induced by a rightM -module S. Its mon-
adic structure is an obvious generalisation of Hyland, Plotkin, and Power’s construction [20]
for Moggi’s [27] monad M(GM)∗ for an endofunctor G.

Since in this and the next sections, we are interested only in right modules, when no
direction (left or right) is given, we mean right modules.

I Theorem 16. Given a monad M , let 〈S,−→µ 〉 be an M -module. The functor MS∗ can be
given monadic structure via a distributive law λ : S∗M →MS∗.

Proof. First, consider the natural transformation δ = η−→µ : SM →MS. It is easy to verify
that it is a distributive law of the functor S over the monad M . Such a distributive law gives
us the following lifting M : Alg(S)→ Alg(S) of M to Alg(S):

M〈A, SA a−→ A〉 = 〈MA, SMA
δA−−→MSA

Ma−−→ A〉
Mf = Mf

Since the category Alg(S) is monadic over C (hence, Alg(S) ∼= EM(S∗)), this lifting can
be seen as a lifting to EM(S∗):

M : EM(S∗)→ EM(S∗)

Applying Theorem 12, we obtain a distributive law λ : S∗M →MS∗, which gives a monadic
structure to MS∗. J

CALCO’15
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Using the definitions of the appropriate isomorphisms and with some calculation, we
can read off a direct definition of the distributive law in terms of a fold, that is, the unique
algebra homomorphism from the initial (S(-) +MA)-algebra to the following algebra, where
consA : SS∗A→ S∗A is the action of the free S-algebra generated by the object A:

λA = ([f ]) : S∗MA→MS∗A,

where ([f ]) is the unique algebra homomorphism from the initial algebra to 〈MS∗A, f〉 for

f = [µMS∗A · consA · −→µ S
S∗A, MηS

∗

A ] : SMS∗A+MA→MS∗A.

I Example 17. The monad MS∗ is a generalisation of Moggi’s resumption monad M(GM)∗
for an endofunctor G. Moggi’s monad arises as the special case for S = GM . It follows from
Example 2 (3) that GM is an M -module. Using the ‘rolling rule’ [6], Moggi’s monad can
be rewritten as A 7→ µX.M(GX + A). A distinctive feature of our construction is that in
general it is not given by an initial algebra.

Moggi’s monad is an important data structure in functional programming, as it is often
used to implement a form of algebraic effects. The endofunctor G represents a signature,
while M is a background monad. Handling of the signature takes G to M , which in Haskell
is often the IO monad. Important examples of this pattern are given by streaming I/O
libraries, which help to manage resources efficiently without losing purity; see, for example,
Kiselyov [22].

I Example 18. We instantiate our resumption monad with the reader monad (-)A together
with its module A× (-) (see Example 3) to obtain ((A× (-))∗)A. It is a version of the state
monad that accumulates the intermediate states in a sequence. (We have previously [28]
given a ‘coinductive’ version of this example.)

The monad MS∗ is an important construction in the theory of modules, since it is freely
generated by S understood as a module. First, we notice that the monad M can be seen as
its own module with −→µ = µ. Moreover, this construction is functorial:

I Definition 19. We define a functor ∆ : Mnd→Mod as follows:

∆M = 〈M,M〉
∆f = 〈f, f〉

The above functor can be seen as a form of a (dependent) diagonal, hence the notation
∆. Mac Lane [23] calls the module ∆M the right regular representation of M , referring to a
similar concept from representation theory in abstract algebra. Hirschowitz and Maggesi [18]
call ∆M the tautological module of M .

I Theorem 20. The monad MS∗ is the free object in the category Mnd generated by S
with respect to the functor ∆. More precisely, this means that for monads M and T , an
M -module S, and a module morphism 〈m, f〉 : 〈M,S〉 → ∆T , there exists a unique monad
morphism k : MS∗ → T such that the following diagram commutes:

M MS∗ S∗ S

T

MηS∗ ηMS∗ embS

m k f
(1)
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Proof. We define k = µT ·mJfK. Using the direct definition of λ, it can be shown using the
properties of initial algebras that k is indeed a monad morphism.

It is easy to see that the diagram (1) commutes from the properties of monads and
the freeness of S∗. To see that k is unique such a morphism, consider a monad morphism
r : MS∗ → T such that the diagram (1) commutes if we substitute r for k. Since ηMS∗ :
S∗ →MS∗ is a monad morphism, the composition r · ηMS∗ : S∗ → T is a monad morphism,
hence, from the freeness of S∗, we obtain that

r · ηMS∗ = JfK (2)

We calculate:

r = r · µMS∗ · ηMS∗MS∗ (monads)

= r · µMµS
∗
·MλS∗ · ηMηS

∗
MS∗ (def.)

= r · µMµS
∗
· ηMMηS

∗
S∗ (distr. law)

= r · µMµS
∗
·MηMηS

∗
S∗ (monads)

= r · µMµS
∗
·MλS∗ ·MηS

∗
ηMS∗ (distr. law)

= r · µMS∗ ·MηS
∗
ηMS∗ (def.)

= µT · rr ·MηS
∗
ηMS∗ (monad morphism)

= µT ·mJfK (LHS of (1) and (2))
= k (def.)

J

4 Algebras for modules

In this section, we introduce the notion of an algebra for a module. We show that the category
of all such algebras for an M -module S coincides with the category of Eilenberg–Moore
algebras for the monad MS∗.

I Definition 21. An algebra for an M -module S is a triple 〈A, f : MA→ A, g : SA→ A〉
such that:
1. The morphism f is an Eilenberg–Moore M -algebra.
2. The morphism g is an S-algebra.
3. The following coherence diagram commutes:

SMA SA

SA A

Sf

g−→µA

g

A morphism between two algebras 〈A, f, g〉 and 〈B, f ′, g′〉 is a morphism h : A→ B that is
both an S-algebra homomorphism f → f ′ and an M -algebra homomorphism g → g′. We
denote the category of algebras for an M -module S as ModAlg(M,S).

CALCO’15
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I Theorem 22. Let S be an M -module. If S∗ exists, the obvious forgetful functor UModAlg :
ModAlg(M,S)→ C has a left adjoint FModAlg given by:

FModAlgA = 〈MS∗A, f, g〉, where

f = MMS∗A
µM

S∗A−−−→MS∗A

g = SMS∗A
−→µS∗A−−−→ SS∗A

consA−−−→ S∗A
ηM

S∗A−−−→MS∗A

FModAlgh = MS∗h

The monad induced by this adjunction is equal to MS∗.

Proof. Consider the adjunction FAlg a UAlg : C ⇀ Alg(S). The lifting M defined in the
proof of Theorem 16 can be seen as a monad on Alg(S). It gives rise to an Eilenberg–Moore
adjunction FEM a UEM : Alg(S) ⇀ EM(M). The objects of EM(M) are algebras of the
following shape:

〈〈A, g : SA→ A〉, f : M〈A, g〉 → 〈A, g〉〉

They satisfy the following conditions:
The morphism g is an S-algebra (obviously).
The morphism f has the Eilenberg–Moore property. Since M inherits its monadic
structure from M , the morphism f : MA → A understood as a C -morphism has the
Eilenberg–Moore property for M .
The morphism f is an algebra homomorphism between M〈A, g〉 = 〈MA, SMA

−→µA−−→

SA
g−→ A

ηM
A−−→MA〉 and 〈A, g〉. The homomorphism diagram is then as follows:

SMA SA A MA

SA A

−→µA g ηM
A

Sf f

g

idA

Since f has the Eilenberg–Moore property, it is the case that f · ηMA = idA (as indicated
by the dashed arrow).

These are exactly the conditions for 〈A, f, g〉 to be an algebra for the module S, which means
that ModAlg(M,S) ∼= EM(M). The adjunction in question is then given by the following
composite adjunction:

FEMFAlg a UAlgUEM : C ⇀ ModAlg(M,S) ∼= EM(M)

It is easy to see that UModAlg agrees with UAlgUEM, so its left adjoint is given by FEMFAlg

modulo the isomorphism. Simple unfolding of the definitions of FAlg and FEM gives us that
the direct definition of their composition is as specified in the theorem. J

I Example 23. We can instantiate the theorem above to the ‘bialgebraic’ proof by Hyland,
Plotkin, and Power’s [20] that M(GM)∗ is a coproduct of M and G∗ in Mnd. First, for two
monads M and T , we define an 〈M,T 〉-bialgebra as a triple 〈A, f : MA→ A, g : TA→ A〉,
where f and g are Eilenberg–Moore algebra actions. All 〈M,T 〉-bialgebras form a category,
BiAlg(M,T ), with morphisms given by C -morphisms that are both M - and T -algebra
homomorphisms. As shown by Kelly [21], in a category with coproducts, if the obvious
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forgetful functor from BiAlg(M,T ) to the base category has a left adjoint, the induced
monad is a coproduct ofM and T in Mnd. Indeed, for anM -module GM (see Example 2 (3)
and (1)), one can prove that the category ModAlg(M,GM) is isomorphic to BiAlg(M,G∗)
as follows.

Since EM(G∗) ∼= Alg(G), we can work with G-algebras (instead of Eilenberg–Moore G∗-
algebras) in the third component of bialgebras. Given an algebra for a module 〈A, f : MA→
A, g : GMA → A〉, we define the corresponding bialgebra as 〈A, f, g · GηA : GA → A〉.
Given a bialgebra 〈A, f : MA→ A, g : GA→ A〉, we define the corresponding algebra for a
module as 〈A, f, g ·Gf : GMA→ A〉. The coherence condition follows easily from the fact
that f is an Eilenberg–Moore algebra action. Simple calculation reveals that that the two
transformations are mutual inverses. It is also easy to verify that a morphism between two
algebras for a module is also a morphism between the corresponding bialgebras and vice
versa.

Theorem 22 characterises the left adjoint to UModAlg (and so, to the forgetful functor
BiAlg(M,G∗)). The induced monad is indeed the free monad generated by the module GM ,
that is, M(GM)∗.

I Example 24. As defined by Atkey et al. [5], following Filinski and Støvring [13], a G-and-M -
algebra is a triple 〈A, m : MA→ A, f : GA→ A〉, whereM is a monad, G is an endofunctor,
f is a morphism, and m is an Eilenberg–Moore algebra action. Morphisms between two
G-and-M -algebras are C -morphisms that are both G- and M -algebra homomorphisms.
The initial G-and-M -algebra (whose carrier is given by µMG ∼= M(µGM)) is used to
model effectful datatypes, which interleave structure and monadic effects. Employing the
isomorphism EM(G∗) ∼= Alg(G), one can easily see that the category of G-and-M -algebras
is isomorphic to BiAlg(M,G∗), and so, as described in the previous example, isomorphic to
ModAlg(M,GM). Since FModAlg : C →ModAlg(M,GM) is cocontinuous (since it is a
left adjoint), the initial G-and-M -algebra can be obviously reconstructed as FModAlg0, where
0 is the initial object of C .

I Theorem 25. If S∗ exists, the functor UModAlg is strictly monadic. This entails that the
category ModAlg(M,S) is isomorphic to EM(MS∗).

Proof. We use the strict version of Beck’s monadicity theorem (see Mac Lane [23, Sec. VI.7]).
We have already shown that UModAlg is a right adjoint, so it remains to show that it creates
coequalisers for those parallel h0, h1 in ModAlg(M,S) for which UModAlgh0 and UModAlgh1
have a split coequaliser in C .

Let h0, h1 : 〈A, fA, gA〉 → 〈B, fB , gB〉 be such a pair. Let c be a split coequaliser of
UModAlgh0 and UModAlgh1. In other words, there exist morphisms s and t such that the
following diagram commutes in C and in which the two horizontal compositions are the
identities:

B A B

C B C

t h0

s c

c h1 c
(3)

We need to show that there exist unique fC : MC → C and gC : SA → A such that
〈C, fC , gC〉 is an algebra for a module, and c : 〈B, fB , gB〉 → 〈C, fC , gC〉 is a homomorphism
and a coequaliser of h0 and h1. From the monadicity of the forgetful functors UEM :
EM(M)→ C and UAlg : Alg(S)→ B, we obtain that there exist a unique Eilenberg–Moore
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M -algebra 〈C, fC〉 and a unique S-algebra 〈C, gC〉, where

fC = MC
Ms−−→MB

fB

−−→ B
c−→ C,

gC = SC
Ss−→ SB

gB

−−→ B
c−→ C,

such that c is the coequaliser of h0, h1 : 〈A, fA〉 → 〈B, fB〉 understood as Eilenberg–Moore
M -algebra homomorphisms and simultaneously the coequaliser of h0, h1 : 〈A, gA〉 → 〈B, gB〉
understood as S-algebra homomorphisms. Thus, it is left to check that 〈C, fC , gC〉 is an
algebra for a module, that is, that the tuple fC and gC satisfy the condition (3) from
Definition 21:

gC · SfC = c · gB · Ss · Sc · SfB · SMs (def.)
= c · gB · Sh1 · St · SfB · SMs (diag. (3))
= c · h1 · gA · St · SfB · SMs (h1 homomorph.)
= c · h0 · gA · St · SfB · SMs (c coequaliser)
= c · gB · Sh0 · St · SfB · SMs (h0 homomorph.)
= c · gB · SfB · SMs (diag. (3))
= c · gB · −→µB · SMs (coherence)
= c · gB · Ss · −→µC (−→µ nat.)
= gC · −→µC (def.)

J

5 Summary and future work

In this paper, we have taken a closer look at the notion of module over a monad, focusing
mainly on right modules. We illustrate our results with a number of examples, some of them
new, some just being a reformulation in the language of modules of previously known results.

One important application we hope for is in functional programming, where structures
similar to resumptions appear in the form of streaming I/O libraries [22] and adaptation of
algebraic effects [31]. Corollary 20 and Theorem 25 give universal properties of the monad
MS∗, which can be used for equational reasoning about programs that utilise them [24].
Providing a simple description of an adjunction that gives rise to MS∗ gives us a more
efficient implementation via the codensity monad trick [17].

Another question is how modules relate to monadic effects, especially their algebraic
presentations, extensively studied by Plotkin and Power [29], and handlers, in the sense of
Plotkin and Pretnar [30]. An algebraic theory induces a monad M as the family of its free
models, while handlers are given by other models, that is, Eilenberg–Moore algebras of the
monad M . As mentioned in Example 5, every Eilenberg–Moore algebra is a module for a
constant endofunctor, but there are families of models that are parametric in variables (for
example, the free model). These can be modelled by general left modules.

As suggested by Example 3, the actions of right modules may represent functions that
run the computations in some context. In these case, the context is a global state A; recall
the types: A× (A×X)A → A×X and A×XA → A×X. Is this a more general situation?
Below, we give another example:

I Example 26. Consider the monad T of binary trees on Set with variables in leaves and
the monad multiplication given by substitution. Intuitively, we interpret them as choice
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trees of randomised computations, in which every choice is equally probable. The context
of execution is given by CX = X × Bω, where Bω is the set of infinite binary streams,
representing possible future sequences of coin tosses. Now, to run the computation in the
context, we go down the tree, choosing a branch based on the front element of the stream
(left upon 0, right upon 1), at each step discarding the front element. Then, the result of
−→µX : TX × {0, 1}ω → X × Bω is a pair consisting of the variable in the leaf that is reached
by going down the tree as specified in the prefix of an appropriate length paired with the
unused ‘tail’ of the stream.

6 Related work

The research presented in this paper is inspired by our previous work [28], in which the
coinductive resumption monad MS∞ was studied, where S∞ is the free completely iterative
monad [3] defined as S∞A = νX.SX+A. There, we use an arbitrary right module S instead
of GM mainly to simplify the presentation and the proofs, although the main result considers
the monad M(GM)∞, which is similar to Moggi’s monad.

Modules are used by Adámek, Milius, and Velebil [2, 25] to capture the notion of
guardedness in their study of iterative monads. They define an idealised monad as a right
M -module S together with a suitably coherent natural transformation σ : S → M . The
general intuition for idealised monads is that S is a ‘subset’ (especially if σ is monic) of
computations that have some good properties, which are retained after composing with any
other computation. For instance, consider Example 4, in which the ‘ideal’ of the non-empty
list monad is given by lists of length at least n. An important example of idealised monads are
ideal monads, which are defined by the property M = S+ Id; see also Ghani and Uustalu [15]
for an extended discussion.

There are some obvious generalisations possible. For example, we can allow S to be
a functor to a different category. This definition was used by Street [32] to define the
Eilenberg–Moore object in a 2-category: it is a universal left module (in the generalised
sense). Hirschowitz and Maggesi [18, 19] and Ahrens [4] use generalised left modules to
capture the construction of higher-order syntax and semantics. They, too, discuss the
elementary theory of modules, but from a slightly different angle: instead of Mod, they
study the category of modules over a single monad M , that is, a fibre of Mod with respect
to the functor Mod → C C that extracts the functor part of a module. This functor has
some nice properties: it has a left adjoint given by G 7→ GM and reflects (co)limits, see
Example 2 (5).

Resumptions were introduced by Milner [26] to capture the semantics of concurrency (see
also Abramsky [1]). In programming, resumptions (known also as ‘trampolined style’ [14]
or ‘engines’ [11, 16]) were first used to control program flow. The first use of resumptions
(although, of course, not explicitly named so) was probably the famous result on structured
programming by Böhm and Jacopini [9].
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