Revisiting the Institutional Approach to
Herbrand’s Theorem

Ionut Tutu®? and José Luiz Fiadeiro!

1 Department of Computer Science, Royal Holloway University of London, UK
ittutu@gmail.com, jose.fiadeiro@rhul.ac.uk

2 Institute of Mathematics of the Romanian Academy, Research group of the
project ID-3-0439, Romania

—— Abstract

More than a decade has passed since Herbrand’s theorem was first generalized to arbitrary institu-
tions, enabling in this way the development of the logic-programming paradigm over formalisms
beyond the conventional framework of relational first-order logic. Despite the mild assumptions of
the original theory, recent developments have shown that the institution-based approach cannot

capture constructions that arise when service-oriented computing is presented as a form of logic
programming, thus prompting the need for a new perspective on Herbrand’s theorem founded
instead upon a concept of generalized substitution system. In this paper, we formalize the connec-
tion between the institution- and the substitution-system-based approach to logic programming
by investigating a number of features of institutions, like the existence of a quantification space
or of representable substitutions, under which they give rise to suitable generalized substitution
systems. Building on these results, we further show how the original institution-independent
versions of Herbrand’s theorem can be obtained as concrete instances of a more general result.
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1 Introduction

The Fundamental Theorem of Herbrand [15] is a central result in proof theory that deals
with the reduction of provability in first-order logic to provability in propositional logic. Its
importance in the context of automated theorem proving was realized in the early 1960s,
when, in combination with the theory of Horn-clause logic, it played a key role in establishing
the mathematical foundations of logic programming (see e.g. [16]). In the conventional
setting of relational first-order logic, Herbrand’s theorem states that, for a set I of Horn
clauses (i.e. for a logic program I'), the answers to an existential query can be found simply
by examining a term model — called the (least) Herbrand model — instead of all the models
that satisfy I'. Over the last three decades, the original result has been generalized to a
variety of other logical systems, including Horn-clause logic with equality [13, 14], hidden
algebra [12], and category-based constraint logic [3], culminating in [5] with an investigation
of Herbrand’s theorem in an arbitrary institution [11] — a categorical formalization of the
intuitive notion of logical system put forward by Goguen and Burstall in the late 1970s.

The results presented in [5] are grounded on an institution-independent treatment of
variables as signature morphisms (which correspond in concrete cases to extensions of
signatures with new constant-operation symbols) that was first outlined in [24]. This
enabled the development of fundamental semantic concepts to logic programming like query
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and solution in arbitrary institutions. Logic programs, for example, are given by theory
presentations (usually universal Horn presentations), while queries are captured through
existential quantifications of basic sentences. We will recall these concepts together with
their corresponding properties one step at a time in the subsequent sections of this paper.

Thanks to its generality, the institution-based approach to Herbrand’s theorem enabled
the development of logic programming over a wide range of logical systems (see e.g. [10],
and also [6]). All the same, certain institution-based forms of logic programming do not
fit into the framework proposed in [5]. In particular, the logic-programming semantics of
services [30] is grounded on a family of logical systems for which the concept of variable
cannot be faithfully captured by means of representable extensions of signatures, thus failing
to meet one of the most basic assumptions of the institution-independent variant of the
theorem. This led us to advance in [29] a new abstract approach to logic programming and,
implicitly, to Herbrand’s theorem over a concept of generalized substitution system that
extends institutions by allowing for direct representations of variables and substitutions —
similarly to the context institutions of [23], though the latter are concrete, in the sense that
the category of models of every signature is concrete over the category of indexed sets.

In the present paper, we continue the work reported in [29] with an investigation of the
relationship between the institution-based and the substitution-system-based approach to
logic programming. More specifically, we show that the hypotheses of the latter are indeed
more general by examining the role of representability (of signature morphisms in arbitrary
institutions) in the construction of a generalized substitution system. The main challenge
here lies in the treatment of substitutions, which, in the institutional setting, are captured
purely through their corresponding translations of sentences and reductions of models. This
prevents us from using the additional information available when substitutions are regarded
as mappings from variables to terms — which is only possible, however, in concrete examples
of institutions such as first-order logic — thus making it difficult to translate substitutions
along signature morphisms. For this reason, the main contributions of our paper, namely the
derivation of a generalized substitution system from a given institution and the reformulation
of the original institution-independent variants of Herbrand’s theorem in the resulting
framework, are parameterized by a class of general substitutions.

The paper is organized as follows: in Section 2 we review the concept of generalized
substitution system and two well-known formalisms that have been studied in the context of
institution-based logic-programming languages; in Section 3 we examine a class of substitution
systems whose variables are defined through extensions of signatures (of a given institution),
and whose substitutions correspond to the institution-independent notion of substitution;
building on these results, in Section 4 we further investigate the translation of variables along
signature morphisms and identify a set of sufficient conditions under which an institution
can give rise to a generalized substitution system; lastly, in Section 5 we present a different
perspective on the institution-independent versions of Herbrand’s fundamental theorem.

2 Technical preliminaries

We generally assume familiarity with the theory of institutions, including its categorical
underpinnings and the presentation of institutions as functors into the category Room of
rooms and corridors (see, for example, the monographs [6, 25]). In terms of category-theoretic
notations, we denote by |C| the collection of objects of a category C, by f; g the composition
of arrows f and ¢ in diagrammatic order, and by 14 the identity arrow of an object A.
Our work makes extensive use of comma categories. To this end, for any object A of a
category C, we denote the comma category of C-objects under A by A / C and the forgetful
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functor A/C — C by |_|,. We also denote by C~ the category of C-arrows, and by dom the
canonical projection functor C~ — C that maps the arrows f: A — B in C to their domain.

2.1 Generalized substitution systems

Substitution systems are the most basic structures that underlie both the denotational and
the operational semantics of the logic-independent approach to logic programming proposed
in [29]. Since their definition relies technically on the category Room, we start by recalling
that a room is a triple (S, M, F) consisting of a set S of sentences, a category M of models,
and a satisfaction relation E C M| x S. Furthermore, a corridor (i.e. a morphism of rooms)
(o, BY: (S, M, E) — (S, M, E’) is defined by a sentence-translation function a: S — S’ and a
model-reduction functor §: M — M such that, for all M’ € |M'| and p € S,

M'E a(p) if and only if  B(M') E p.
The following definitions originate from [29].

» Definition 1 (Substitution system). A substitution system is a triple (Subst, G, S), usually
denoted simply by S, that consists of

a category Subst of (abstract) signatures of variables and substitutions,
a room G of ground sentences and models, and

a functor §: Subst — G / Room defining, for every signature of variables X, the corridor
S(X): G — G(X) from G to the room G(X) of X-sentences and X -models.

A classical example can be obtained by defining Subst as the category of (sets of) variables
and substitutions over a fixed first-order signature ¥. In that case, G is the room of those
sentences of ¥ that are ground (i.e. without variables), and the corridors S(X) correspond
to the signature morphisms that extend ¥ by adding the variables of X as new constants.

Generalized substitution systems can be regarded as extensions of substitution systems
that are parameterized by the signature used. In this sense, the connection between general-
ized substitutions systems and substitution systems is similar to that between institutions
and rooms: generalized substitutions systems are functors into the category SubstSys of
substitutions systems. To make this definition more precise, we recall from [29] that a morph-
ism of substitution systems between S: Subst — G/ Room and S’: Subst’ — G’/ Room is
a triple (¥, k,7), where ¥ is a functor Subst — Subst’,  is a corridor G — G’, and 7 is a
natural transformation S = ¥ ;S’; (k / Room).

» Definition 2 (Generalized substitution system). A generalized substitution system is a pair
(Sig, GS) given by a category Sig of signatures and a functor GS: Sig — SubstSys.

2.2 Equational logic programming

Before we embark on the study of institution-based abstract logic-programming languages,
let us briefly survey the logical systems that underlie two of the most prominent examples of
(concrete) logic-programming languages examined in the context of institutions: first-order
and higher-order equational logic programming (see e.g. [13, 19], and also [22]). These
will form the main reference points that we will use to illustrate the various concepts and
properties discussed in the subsequent sections of our paper.
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First-order equational logic

First-order equational logic programming is defined over the quantifier-free fragment of
many-sorted first-order equational logic, whose institution we denote by QF-FOL_. In what
follows, we only give a succinct presentation of the most important first-order concepts
needed for the purpose of our work. A more in-depth discussion of QF-FOL_ can be found,
for example, in [14, 29], or in the recent monographs [6, 25].

Signatures. The signatures of QF-FOL_ are pairs (S, F'), where S is a (finite) set of sorts and
Fis a family (Fi—s),cg+4cg Of (finite) sets of operation symbols indexed by arities and
sorts. Signature morphisms ¢: (S, F) — (S, F') are defined by functions ¢5*: S — S’
between the sets of sorts and by families of functions w1 Fiyys — Fise(y ), for
w € S* and s € S, between the sets of operation symbols.

Sentences, models, and the satisfaction relation. For every signature (S, F) and every sort
s € S, the set Tp s of F-terms of sort s is the least set such that o(t1,...,t,): s € T
for all o € Fy,...5, s and t; € Tgs,. The sentences over (S, F') are built from equational
atoms | = r, where |,7 € Tg, for some s € S, by iteration of the usual Boolean
connectives.

The models, or algebras, M of {S, F) interpret each sort s € S as a set My, called the carrier
of sin M, and each operation symbol o € Fj,...s, s as a function My : Mg, X - x M, —
M. Homomorphisms h: My — My are families of functions (hs: My s — M), g such
that hs(Mio(mi,...,my)) = My s(hs,(Mm1),..., hs,(my)) for all o € F .5, s and
m; € ]\437

Finally, the satisfaction relation is defined by induction on the structure of sentences,
based on the evaluation of terms in models. For instance, an (S, F')-model M satisfies an
equational atom [ = r if and only if the terms [ and r yield the same value in M.

— (s

Higher-order logic with Henkin semantics

Following the lines of [20], and also of more recent institution-theoretic works such as [25, 28],
we define and study higher-order logic programming over a simplified version of higher-order
logic with Henkin semantics that only takes into account A\-free terms. This does not limit
the expressive power of the logic since for any term A(z: s).t one can define a new constant
o and a universal sentence of the form V{x: s} -ox = t.! Similarly to first-order equational
logic programming, for the results presented in the following sections it suffices to consider
the quantifier-free fragment of higher-order logic, whose institution we denote by QF-HNK.?

Signatures. A higher-order signature consists of a set S of basic types, or sorts, and a
family (F),cg of sets of constant-operation symbols indexed by S-types, where S is the
least set for which S C S and §1— 89 € S whenever §1,89 € S. Signature morphisms
©: (S, F) = (S F") comprise functions ¢*: § — &' and ¢°: F, — Flvpe(y), for s €
S, where ¢Pe: § — S’ is the canonical extension of ¢ given by WP (51 — 89) =
PYP(s1) = @VPC(52).

Sentences, models, and the satisfaction relation. Given a signature (S, F), the family
(Tpvs)seg of F'-terms is the least family of sets such that c: s € Tgr, for all s € S

1A detailed presentation of this encoding, formalized as an institution comorphism, can be found in [9].
2 Note that the universal sentences needed for encoding A-terms can still be defined as Horn clauses of
the logic programs under consideration.
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and o € Fy, and (tt1) € Tp, for all terms ¢ € Tp,, s, and t1 € Tp,,. As in the case
of QF-FOL_, the sentences over (S, F') are built from equational atoms | = r, where [
and r are terms in Tr, for some type s € S , by repeated applications of the Boolean
connectives.

The models M of a higher-order signature (S, F) interpret the types s € S as sets
My, the constant symbols o € F; as elements M, € M, and define injective maps
L1, Mg, s, — [My, — M,,], where [M,, — M,,] denotes the set of functions from
M, to M,,, for any two types s1,s2 € S. Model homomorphisms h: My — M, are
families of maps (hs: My s — Ma ), g such that hy(M; ) = M, for every type s € S
and operation o € Fy, and [f])1,, ; hey, = hey; [hsy—s (f)]22,,, for all 51,55 € S and
f € Ml,slﬁsz-

The satisfaction relation relies once again on the interpretation of terms in models, which
extends the interpretation of constant-operation symbols as follows: for every (S, F')-model
M and every pair of terms t € Tp s, s, and t1 € Tps,, M) = [M Y, (My,).

3 Institution-independent substitutions

The institution-independent concept of substitution (see [5], and also [6]) generalizes first-
order substitutions (as well as second-order and higher-order substitutions, among others)
to arbitrary institutions by taking notice only of their syntactic and semantic effects: the
translations of sentences and the reductions of models that they generate. A key step in
arriving at this notion is the presentation of the extensions of signatures by sets of variables
as particular cases of signature morphisms (along the lines of [24]). Thus, for any two
signature morphisms y1: ¥ — 37 and x2: ¥ — 32 (two extensions of ¥) in an institution
T = (Sig, Sen, Mod, E), a substitution 1: x1 — x2 is a pair (Senx(¢), Mods (1)) given by

a sentence-translation function Senx ()): Sen(X;) — Sen(X3) and

a model-reduction functor Mods(¢): Mod(X2) — Mod(%4)
that preserve X, in the sense that Sen(x1) ; Senx (1) = Sen(x2) and Modx(¢) ; Mod(x1) =
Mod(xz2), and satisfy the following condition:

My Ex, Senx(¢)(p1) if and only if Modyx (¢)(Ms2) Ex, m

for every Yo-model Ms and every Y;-sentence p;.

In this work, we take into consideration an equivalent formulation of the original definition
that makes use of the category Room of rooms and corridors. In addition, we extend the
fact that substitutions inherit the composition of their components — thus giving rise to a
category — to derive a general substitution system of X-substitutions for each signature X.

» Proposition 3. Let Q@ C Sig be a class of signature morphisms of an institution T
regarded as a functor Sig — Room. For every I-signature Y we obtain a substitution
system SIg: Subst — Z(X) / Room defined as follows:

The objects of the category Subst% — i.e. the signatures of X-variables — are signature

morphisms x: X — X(x)® belonging to the class Q. Their corresponding corridors via
the functor SIS are given simply by Z(x): Z(X) — Z(2(x)).

3 For convenience, we denote the codomain of the signature morphism x by X (x); this reflects the intuition
that 3 () is an extension of the signature ¥ with variables defined by .
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For every two signatures of S-variables x1: ¥ — X(x1) and x2: ¥ = X(x2), a X-substitu-
tion ©: x1 — x2 (i.e. a morphism in Substs) consists of a corridor (Sens (1)), Mods (1))
between Z(3(x1)) and Z(X(x2)) such that Z(x1) ; (Sens (1)), Mods(¥)) = Z(x2)-

Z(x1) Z(x2)

(%) Z(X(x2))
)

(Senx (¢),Mods (¥))

As such, ¥-substitutions are merely arrows in the comma category Z(X) / Room, meaning
that they are identified with their images under the functor SI%. The composition of
substitutions is defined accordingly.

» Example 4. In QF-FOL_, a wvariable over a signature (S, F) is a triple (x,s, F._,),*
often denoted simply by xz: s, where x is the name of the variable and s is its sort. Thus,
QF-FOL_-signatures of (S, F')-variables X are S-indexed families of sets X of variables of
sort s such that different variables have different names. First-order substitutions ¢: X —'Y
can be further defined as S-indexed families of maps ¥s: X5 — Tryy,s that assign a term
over the extended signature (S, F UY') to every variable of X.

One can easily check that first-order substitutions ¢: X — Y indeed give rise to general
substitutions between (S, F) C (S, FUX) and (S, F) C (S, FUY") (see e.g. [6]). For instance,
the reduct Mod s py(¢)(IN) of an (S, F'UY)-model N is the (S, F'U X)-expansion of N g p
given by Mod s gy (¥)(IN),. ; = Ny(q) for every variable z: s of X. Note, however, that not
every general substitution between (S, F') C (S, FUX) and (S, F) C (S, FUY) corresponds
to a first-order substitution; we will discuss this aspect to a greater extent in Section 4.2.

Higher-order signatures of variables and substitutions can be defined likewise, by recalling
that a higher-order variable over a signature (S, F') is a triple of the form (z, s, Fs), where x
and s correspond to the name and the type of the variable (see e.g. [28], and also [2]). As
expected, this means that we allow higher-order variables to range over arbitrary functions.

4  Quantification spaces

Due to its mild assumptions, the construction outlined in Propostition 3 cannot be easily
generalized to accommodate signature morphisms. More precisely, one cannot guarantee
that signature morphisms p: ¥ — ¥’ lead to adequate morphisms between the substitution
systems associated with ¥ and ¥’: it would suffice, for example, to consider a class Q of
signature morphisms that consists only of extensions of ¥, thus preventing the translation of
the signatures of Y-variables along . To overcome this limitation, we take into account only
those extensions of signatures that belong to a quantification space — a notion introduced
in [7] in the context of quasi-Boolean encodings® and utilized in a series of papers on
hybridization and many-valued institutions (see e.g. [17, 8]). For the purpose of our work,
it will be convenient to consider a more categorical formulation of the original definition of
quantification spaces, based on Fact 5 below.

» Fact 5. Consider a category C and a subcategory Q of the category C~ of C-arrows.
The domain functor dom: Q — C gives rise to a natural transformation g: (_ / Q) =

4 'We denote the empty arity by &; hence, Fe—s is the set of constants of sort s of the signature (S, F).
® Tt should be noted, however, that the ideas that underlie quantification spaces can be traced back to [27]
— one of the earliest works in which open formulae are treated in arbitrary institutions.
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dom®? ; (_/C) where (_/Q): Q°°> — Cat and (_ / C): C°? — Cat are the canonical
comma-category functors and, for every triple (Ay, f, A2) in |Q| (i.e. arrow f: Ay — A
in C), wg,5: [/ Q— Ay /C is the functor that maps the morphisms (g1, g2): (A1, f, As) —
(A%, f, ALY in Q (corresponding to commutative squares in C) to g1: Ay — Af.

A 2 AL
fl J{f’ — A LU Al
A2 —_— AIQ

g2

» Definition 6 (Quantification space). For any institution Z: Sig — Room, a quantification
space consists of a subcategory Q of Sig™ such that

1. every arrow in Q corresponds to a pushout in Sig, and

2. the transformation tg: (_ / Q) = dom®”; (__/ Sig) is a natural isomorphism.

This means that for every extension of signatures x: ¥ — 3(x) in |Q| and every signature
morphism ¢: ¥ — 3’ there exist a unique extension y’': ¥’ — ¥'(y’) in |Q| and a unique
signature morphism ¢: ¥(x) — X’'(x’) such that the pair {p, ¢) defines a morphism in Q
between the arrows y and x’.5 We will henceforth denote the signature extension y’ and the
signature morphism ¢ by x¥: ¥ — ¥/(x¥) and oX: 3X(x) — X/(x¥), respectively.

Sy
xl x?
00— T x?)
» Example 7. For both QF-FOL_ and QF-HNK, the extensions of signatures x: (S, F) —
(S, FUX) defined by (families of) finite sets of first-order /higher-order (S, F')-variables X form
a quantification space. More precisely, for every signature morphism ¢: (S, F) — (S, F'),
x¥: (ST F")y — (S F' U X?) is the extension of (S, F’) given by the sets of variables
X7 ={x: 5 |z:se X, for some sort s € S (or type s € S) such that ¢(s) = s'}, and
©X: (S, FUX) — (8 F"UX%) is the canonical extension of ¢ that maps each (S, F)-vari-
able z: s in X to the (S, F')-variable z: ¢(s) in X%.

» Definition 8 (Adequacy). For any institution, a quantification space Q is said to be adequate
if every arrow {p, pX): x — x¥ in Q corresponds to a model-amalgamation square: for every
¥'-model M’ and ¥(x)-model N such that M'[, = N, there exists a unique model N’ of
¥'(x¥) — the amalgamation of M" and N — such that N'[,, = M" and N'[, = N.

In semi-exact institutions” — like QF-FOL_ (see [18]) — all quantification spaces are
adequate. This is not the case of QF-HNK, for which it is known that, due to the presence of
higher-order types, not every pushout square of signature morphisms is a model-amalgamation
square (see e.g. [2]). Nonetheless, the quantification space for QF-HNK outlined in Example 7
is adequate: the amalgamation N’ of any two given models M’ of (S, F') and N of (S, FUX)
is the unique x¥-expansion of M’ that satisfies N/,

o(s) = N s for each variable z: s in X.

» Remark 9. Since the morphisms of any quantification space Q are required to form a
category (by definition, Q is a subcategory of Sig™), for every signature extension x: ¥ — X(x)

6 Moreover, the signature morphisms x’ and ¢ correspond to a pushout of ¢ and x.
7 We recall that an institution is semi-exact if its model functor preserves pullbacks.
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in |Q| and every pair of composable signature morphisms p: X — X' and ¢': ¥ — X", we
have (x?)? = x#%" and ¢X; (¢') = (p;¢')X. Moreover, x'* = x and 1§ = 1y ().

’

® ®

E//

l)f l(xkp)v’zxww/

by
x|
(¢")x*

S(x) —— ¥ (x?) —— £ ((x*)*)
N 7

(pip")X

Quantification spaces thus provide adequate support for translating abstract signature exten-
stons along morphisms of signatures in a functorial manner.

4.1 Representable signature extensions

Since the institution-independent substitutions of Proposition 3 correspond to a semantic
concept, we cannot expect to translate them along signature morphisms in the same manner
as the extensions of signatures. The solution that we propose herein relies on an important
characterization of the first-order signature extensions with new constant-operation symbols:
for every QF-FOL_-signature extension (S, F') C (S, F'U X) there is a one-to-one correspond-
ence between the models of (S, F'U X) and the model homomorphisms defined on the free
(S, F)-algebra Tr(X) over the set of variables X; in particular, every (S, F'U X)-model N
determines the homomorphism h: Tr(X) — N[ g py given by h(x) = N, for every variable
2 in X. In this context, Tr(X) is said to be a representation of the inclusion of signatures
(S,F) C (S,FUX). The following definition originates from [4].

» Definition 10 (Representable signature morphism). In any institution, a signature morphism
X: X — X(x) is representable if there exist a ¥-model M, called the representation of x,
and an isomorphism of categories i, between Mod(X(x)) and M, / Mod(X) such that the
following diagram commutes.

Mod(X)

Jo

Mod(X(x)) — M, / Mod(%)

Representable first-order signature morphisms were studied in depth in [26], from where
we recall Proposition 11 below (see also [6]).

» Proposition 11. A first-order signature morphism is representable if and only if it is
bijective on all symbols, except constant-operation symbols.

Consequently, all QF-FOL_-signature extensions with constants are representable.

A similar result can be obtained for QF-HNK. In that case, however, the signature exten-
sions with constants (S, F') C (S, F U X) can only be guaranteed to be quasi-representable,
in the sense that, for every (S, F'U X )-model N, the canonical functor N/ Mod(S, FU X) —
Nls,ry / Mod(S, F) determined by the model-reduct functor _[(g g is an isomorphism
(see, for example, [2] for more details). Representability further requires that the resulting
higher-order signatures (S, F'U X) have initial models, a property which holds whenever
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(S, F U X) has at least one constant-operation symbol for each type.

» Remark 12. Let x: ¥ — X(x) and x': X' — ¥'(x') be a pair of representable signature
extensions defined by a quantification space Q, and let 8 and B’ be two functors as depicted
below such that Mod(x'); f = 5" ; Mod(x).

B

Mod () Mod(X')
Mod(Z(x)) ¢ . Mod(¥'(x))
i\ i/\

X

M, / Mod(%) % M,/ Mod (%)

The composition z';,l i B 11y gives rise to a functor U between the comma categories M, /
Mod(X') and M, / Mod(X), where
for every Y'-model homomorphism h': My, — M', U(K') is the ¥-model homomorphism
(i LB iy ) (R My — B(M'), and
for every arrow f': hy — hiy between model homomorphisms h}: M, — M| and
ho: My — M, U(f') is just the S-reduct of f', B(f'): B(M]) — B(M3).
When 8 is the model-reduct functor Mod(y) of a signature morphism ¢: ¥ — %', and when X'
and ' are x? and Mod(pX), respectively, we will denote the functor U: My, / Mod(X') —
M, /Mod(X) by U, . Similarly, when § is the identity of Mod(X) and B is the underlying
model functor of a substitution 1: x — x', we will denote the functor U by U,.

Model homomorphisms h': M, — M’ can be regarded both as objects and as arrows
(between 1y, and h') in the comma category M,s/ Mod(X'). In combination with the
definition of U: M,, / Mod(X') — M, / Mod(X), the arrow view provides us a useful
factorization of U(h’) as U(lnm,); B(h’)

1, B U(lMx’) (h)
/ \ = / \
\/ 4>M' B(M,y) Wﬁ (M)

» Fact 13. Under the notation and hypotheses of Remark 12, for every X'-model homo-
morphism h': My — M', U(K') = U(1nm,) ; B(R').

4.2 Representable substitutions

Quantification spaces that have representable extensions of signatures, meaning that every
extension x: ¥ — X(x) defined by the quantification space is representable, allow us to
extend the concept of representability from signature extensions (i.e. signatures of variables)
to substitutions, leading to a purely model-theoretic view of the categories of substitutions.

» Proposition 14. For any signature Y. in an institution with a quantification space Q, the
representation of signature extensions generalizes to a functor Rg: Subst(% — Mod(X), where

8 This property is commonly achieved by assuming that, for each type s € S, the set F, contains an
implicit constant-operation symbol.
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for every extension of signatures x: ¥ — 3(x) in |Q), R%(X) =M,, and
for every substitution ¥: x1 — X2, R%(’L/J) =Uyp(lm,,): My, = My,.
Moreover, for every X-substitution v, Mods (¢) is uniquely determined by R%(w).

When the quantification space Q and the signature ¥ are clear from the context, we may
also denote the representation R% (¢) of a substitution ¥: x1 — X2 by hy: My, = M,,.

Note that, in general, the functor R%: Subst% — Mod(X) of Proposition 14 need be
neither full nor faithful. For example, in the case of QF-FOL_, for every general substitution
1 we can define another substitution ¢’ (with the same domain and codomain as ) such
that, for every atomic sentence [ = r that is not ground, Senyx(¢’)(l = r) corresponds to
Senx (1) (r =1). In consequence, we can obtain distinct institution-independent substitutions
having the same underlying model functor — and thus, the same representation. This is
contrary to our intuition concerning first-order substitutions, where, given a signature (S, F'),
every substitution i: X7 — X, i.e. every S-indexed family of maps ¢s: X1 s = Trux,,s,
is determined uniquely by its representation R?&F) (¥): Tp(X1) — Tr(X2). As we will
see later, the full and faithful representation of substitutions as model homomorphisms is
essential for translating substitutions along signature morphisms.

» Definition 15 (Representable substitution). Let ¥ be a signature in an institution equipped
with a quantification space Q. For every subcategory Substy C Subst%, a substitution
11 x1 — X2 in Substy is said to be Q-representable if it is uniquely determined by its image
under Rg. In addition, Substy; forms a category of Q-representable X-substitutions if the
restriction of the functor Rg: SubstgQ — Mod(X) to Substy, is both full and faithful.

» Example 16. Let Q be the quantification space for QF-FOL_ presented in Example 7. For
every signature (S, F'), the subcategory Subst g py C Subst(%& P whose arrows correspond
to the corridors induced by first-order substitution forms a category of Q-representable
substitutions. A similar property can be formulated for higher-order substitutions.

For the remaining part of this paper we will assume that T is an arbitrary but fized
institution (Sig, Sen, Mod, E) equipped with

an adequate quantification space Q C Sig™ of representable signature extensions, and

a broad subcategory Substy, C Substg (i.e. with the same objects as Subst%), for every

signature ¥ € |Sig|, of Q-representable X-substitutions.

» Lemma 17. Under the above assumptions, for every morphism p: ¥ — ¥/ in Sig and every
signature extension x: X — X(x) in |Ql, the homomorphism Uy, (1a1,,): My — My, is
a universal arrow from M, to Mod(y).

The lemma above enables us to make use of a well-known construction of adjoint functors

from universal arrows (see e.g. [1]) to derive translations between categories of substitutions.

» Proposition 18. Every morphism of signatures ¢: X — X' gives rise to a functor
U, : Substy; — Substss that maps

©

(%) ()
Z(x1) Z(x¥)
Z(x2) Z(x¥)
I(X(x1)) — T D) (X' (xY))
> (RS,) ™ (h2) >
Z(%(x2)) Zio°) (¥ (x3))

313

CALCO’15



314

Reuvisiting the Institutional Approach to Herbrand’s Theorem

every signature extension x: ¥ — 3(x) to x¥: X' — ¥/(x¥), and
every Y-substitution ¢ : x1 — X2 to Y¥ = (R%/)fl(hi), where N is the unique X'-ho-
momorphism fo — MX;" for which the diagram below commutes.

U<P~X1 (1fo)

—_—
MX1 fo [99 htP r fo hLP

ho T ~

My, —— M,»

U%X’z(lMX;’) 2

Moreover, W itself is functorial, in the sense that V., = V,; ¥, for every pair of composable
signature morphisms ¢: X = X' and ¢': X' = X" and Vi, = Igupsts -

Proof. The first part of the statement follows by Lemma 17 as a direct consequence of the
universal property of the homomorphism U, ,, (1 MXT) — note that, since the functor R% is
assumed to be both full and faithful, for every signature X, it suffices to reason about the
representations of substitutions. With respect to the second part of the statement, notice
first that, by the definition of quantification spaces, the translation of signature extensions
along signature morphisms is functorial (see Remark 9). In addition, by Remark 12, for
every signature extension x: X — X(x), Uppy = Upye s Uy . This allows us to deduce,
according to Fact 13, that Uyipry (1ar,) = Uy (1n1,) i Ugrxe (1aa ). Hence, by the general
properties of composing universal arrows, we can further conclude that the translation of
substitutions along signature morphisms is also functorial. |

4.3 Deriving generalized substitution systems

For any signature morphism ¢: ¥ — ¥/, the functor ¥, : Substy;, — Substy, discussed in
Proposition 18 can be extended in a straightforward manner to a morphism (¥, k., 7,)
between the substitution systems SZy, and SZyy obtained by restricting the functors SIg and
SIg, of Proposition 3 to the subcategories Substy, and Substy: of Y- and ¥'-substitutions.

Substs —224 7(S) / Room

\I/y,l \U,Tg; TI(QD)/]ROOIH

Substyy —— Z(X') / Room
STy

To be more specific, k,, is the corridor (Sen(y), Mod(y)) obtained by taking the image Z(¢)
of ¢ under the institution Z, regarded as a functor into Room. Furthermore, for every
signature extension x: ¥ — X(x), the corridor 7, : Z(3(x)) = Z(X'(x¥)) is simply Z(¢X).
It should be noted, however, that the naturality of 7, holds in general only up to semantic
equivalence (see Proposition 19 below): this means that we can only guarantee that Mod(pX)
is natural in x, and thus that, for every substitution ¢: x1 — x2 and sentence p over %(x1),
©X2((p)) and ? (X' (p)) are satisfied by the same class of models. In concrete cases like
QF-FOL_, the equality ©X2(¢(p)) = ¥?(¢X*(p)) is usually due to the careful choice of the
categories of substitutions; other choices, which may involve, for example, swapping the
left- and the right-hand side of non-ground equational atoms, do not necessarily give rise to
natural transformations 7,. For this reason, in what follows, we will implicitly assume that
the categories Substy, of Y-substitutions are compatible with respect to signature morphisms,
meaning that ¢ ; Z(pX2) = Z(pX?) ;¢? for every substitution ¥: x; — xo.

» Proposition 19. For every signature morphism p: ¥ — X' and every X-substitution
Vi x1 — X2, Mod(¢X?) ; Modyx,(¢) = Mods: (¢%) ; Mod(¢X!).
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We can now conclude the construction of a generalized substitution system SZ: Sig —
SubstSys from an arbitrary institution Z: Sig — Room that satisfies the hypotheses laid out
in Section 4.2 by noticing that, according to Proposition 18, to the fact that Z is a functor,
and to Remark 9, all components of the morphism of substitution systems (¥, k., 7,)
presented above are functorial in ¢. Moreover, since the quantification space of Z is assumed
to be adequate, the generalized substitution system SZ has model amalgamation.”

» Theorem 20. For every institution Z: Sig — Room equipped with an adequate quantific-
ation space Q of representable signature extensions and with compatible categories Substy
of Q-representable X-substitutions, ST : Sig — SubstSys is a generalized substitution system
that has model amalgamation.

» Example 21. Both institutions QF-FOL_ and QF-HNK, in combination with the extensions
of signatures with constants and with the first-order and higher-order substitutions outlined
in Example 4, give rise to generalized substitution systems.

5 Logic programming over an arbitrary institution

The view we take here is that the logic programming paradigm can be developed over an
arbitrary institution Z: Sig — Room by considering logic-programming frameworks and
languages as in [29] defined over the generalized substitution system SZ: Sig — SubstSys
introduced in Section 4.3. To this end, we assume that Z: Sig — Room is an institution that
satisfies the hypotheses of Theorem 20, and we let £ be a logic-programming language whose
underlying generalized substitution system is derived from Z.'°

Under the additional assumption that, for every signature 3, the identity 1y is a signature
of variables — the ‘empty’ signature of Y-variables — the general institution-independent
versions of Herbrand’s theorem presented in [5, 6] can be obtained as concrete instances
of Herbrand’s theorem for abstract logic-programming languages. In particular, the equi-
valence 1 < 2 of Theorem 25 below captures the denotational aspect of the result — how
the problem of checking whether a logic program entails a given query (formalized as an
existential sentence) can be reduced from all models of the program to those that are initial;
on the other hand, the equivalence 2 < 3 emphasizes the operational aspect of the theorem —
the correspondence between those expansions of the program’s initial model that satisfy the
underlying (quantifier-free) sentence of the query and the possible solutions to the query.

To start with, let us recall that, in any category, an object A is projective with respect to
an arrow e: B — C provided that every other arrow f: A — C' can be factored through e as
f = h;e, for some arrow h: A — B. For instance, as a consequence of the axiom of choice,
for every Qr-FOL_-signature extension (S, F') C (S, F U X), the free algebra Tp(X) — that
is the representation of the inclusion (S, F) C (S, F U X) — is projective with respect to all
epimorphisms, and in particular with respect to all quotient homomorphisms between the
initial models 0(g py of the signature (S, F') and O(g gy r of sets of (S, F')-clauses I'.

The concept of basic sentence (see [4], and also [27], where it was studied under the
name of ground positive elementary sentence) captures the satisfaction of the conjunctions of
atomic sentences that are usually involved in defining logic-programming queries.

9 This property is essential for ensuring that the satisfaction of clauses and queries is invariant under
change of notation; in general, it means that, for every signature morphism ¢: ¥ — %' and signature of
Y-variables X, we can amalgamate those models M’ of ¥’ and N of X that have the same Y-reduct.

1074 should be noted that, in the present paper, we do not fully address the operational semantics of £. A
detailed presentation of the goal-directed rules — which, for first-order and higher-order equational logic
programming, correspond to paramodulation — can be found in [29].
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» Definition 22 (Basic sentence). For any signature X, a sentence p is said to be basic if
there exists a model M, such that, for every 3¥-model M, M Fyx, p if and only if there exists
a model homomorphism M, — M.

» Example 23. In the institution QF-FOL_, every (finite) conjunction of first-order equational
atoms forms a basic sentence (see, for example, [6]). This property does not hold in general
for QF-HNK, for which one can define higher-order equational atoms of the form oy f = o3 f,
with f: s — s and 01,09: (s = s) — ¢, that are not basic (see [2, 6]).

We also recall from [29] the following concept of reachability.

» Definition 24 (Reachable model). Given an extension x: ¥ — X(x), a Z-model M is
x-reachable if for every y-expansion N of M there exists a substitution ¥ : x — X’ such that
X’ is conservative, in the sense that every Y-model admits a x’-expansion, and
the canonical map __[, : N / Modx(y)) — M / Mod(x’) determined by the reduct functor
Mod(x) is surjective on objects.

The above preliminaries enable us to recast the institution-independent versions of
Herbrand’s theorem in the context of abstract logic-programming languages.

» Theorem 25. Consider a logic program (3, )1 and a S-query 3x - p such that
both the signature ¥ and the program (¥,T") have initial models Ox and Ox r,
M, is projective with respect to the unique homomorphism r: Os — Os r, and
the X(x)-sentence p is basic.
Then the following statements are equivalent:
1. T Eg x-p.
2. 0271‘ bg E|X cp-
3. There exists a substitution ¥: x — X' such that X' is conservative and T Ex VX' - (p).

Proof. According to [29, Theorem 5.12], it suffices to prove that Oy p is x-reachable and
that p is preserved by y-homomorphisms. The latter property follows from the assumption
that p is basic (see [4]). Therefore, we will focus solely on proving that Oy r is x-reachable.

Let Nx r be a x-expansion of Oy . Since x is a representable extension of signatures
(by hypothesis), we know that i, (Nx r): M, — Osr is an object of the comma category
M, /Mod(X); and because its representation, M, is projective with respect to Ir: Os — Ox r,
it follows that there exists a homomorphism h: M, — Ox such that h;!r = i (Ns ).
Moreover, since the identity 1y is a signature of X-variables — which, by hypothesis, is also
representable — we deduce that Oy is (isomorphic to) the representation My, of 1x. By the
representability of Y-substitutions, we further obtain the substitution (Rg,)fl(h): x — 1y,
which we will henceforth denote by 1. All we need to show now is that the canonical map
_Is: Nor /Mods(¥) — Os.r / Mod(X) is surjective on objects.

To this end, notice that every ¥-model homomorphism g: Oxsr — M can be viewed
as an arrow in M, / Mod(X) between i, (Nxr) and iy (Nx ) ; ¢, from which we deduce
that i;'(g) is a X(x)-model homomorphism between Ny p and N = i '(iy(Nsr) ; g).
In addition, by Proposition 14 and the commutativity of the diagram below, we obtain
Mty =i (h; ) =i (iy(Nsr) 5 g) = N, thus confirming that ii'(g): Ner — M,

1 For simplicity, we only consider here logic programs defined as theory presentations. The same result
can still be stated for more complex, structured logic programs as in [29].
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is an object of Ny r / Modx (). The conclusion of the theorem follows by observing that
Nig = lix(Ner) i gly, = M and i51(g) I = lgla, = 9.

M, —)Og

N, S N

OZF—>M <

6 Conclusions

In this paper, we have examined the connection between the institution-independent approach
to Herbrand’s theorem reported in [5] and the abstract axiomatic theory of logic programming
that we previously proposed in [29]. We have first shown that, for an arbitrary but fixed
signature Y of an institution Z, any class of Z-signature morphisms gives rise to a canonical
Y-substitution system whose substitutions correspond precisely to the institution-independent
concept of substitution. Lifting this result to institutions and generalized substitution systems
— 50 as to enable the application of the general variant of Herbrand’s theorem from [29] —
proved to be much more difficult, and it required the development of a number of new
properties and results concerning quantification spaces and the representability of signature
morphisms. To summarize, we have determined that any institution equipped with an
adequate quantification space of representable signature extensions and with compatible
categories of representable substitutions leads to a generalized substitution system. Moreover,
we showed that the resulting generalized substitution system has model amalgamation, and
thus that it forms a suitable foundation for defining logic-programming languages.

The most problematic aspect of the derivation of a generalized substitution system is the
translation of institution-independent substitutions along signature morphisms, for which one
still has to check properties such as compatibility for each particular institution of interest.
For this reason, a promising line of research would be to explore alternative, more syntactic,
and also more specific notions of substitution, inspired for example by the recent study [21]
on derived signature morphisms and substitutions in the context of institutional monads.
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