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Abstract
For predual categories C andD we establish isomorphisms between opfibrations representing local
varieties of languages in C, local pseudovarieties of D-monoids, and finitely generated profinite
D-monoids. The global sections of these opfibrations are shown to correspond to varieties of
languages in C, pseudovarieties of D-monoids, and profinite equational theories of D-monoids,
respectively. As an application, a new proof of Eilenberg’s variety theorem along with several
related results is obtained, covering uniformly varieties of languages and their coalgebraic modi-
fications, Straubing’s C-varieties, and fully invariant local varieties.
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1 Introduction

In algebraic automata theory, regular languages are studied in connection with associated
algebraic structures, using Eilenberg’s celebrated variety theorem [7]. This theorem establishes
a one-to-one correspondence between varieties of languages and pseudovarieties of monoids. A
variety of languages associates to each finite alphabet Σ a set VΣ of regular languages over Σ
which is closed under (a) the boolean operations (union, intersection and complement), (b) left
derivatives a−1L = {w ∈ Σ∗ | aw ∈ L } and right derivatives La−1 = {w ∈ Σ∗ | wa ∈ L }, for
a ∈ Σ, and (c) preimages of free monoid morphisms, i.e. for every free monoid homomorphism
f : Σ∗ → ∆∗ and every L ∈ V∆, the preimage f−1[L] lies in VΣ.

Not every interesting class of languages falls within this scope, though. For this reason
several authors weakened the closure properties in the definition of a variety of languages,
and proved Eilenberg-type theorems for these modified varieties. For example, Pin’s positive
varieties [14], omitting closure under complement, correspond to pseudovarieties of ordered
monoids. Polák’s disjunctive varieties [16], further dropping closure under intersection,
correspond to pseudovarieties of idempotent semirings. Reutenauer’s xor varieties [18], closed
under symmetric difference in lieu of the boolean operations, correspond to pseudovarieties
of associative algebras over the field Z2. Straubing [20] introduced C-varieties of languages,
where one restricts to closure under preimages of a chosen class C of free monoid morphisms
in lieu of all free monoid morphisms. They are in bijection with C-pseudovarieties of monoid
morphisms, these being classes of monoid morphisms with suitable closure properties.

The above notions of a variety of languages treat the alphabet as a variable. A closely
related line of work concerns “local” versions of Eilenberg’s variety theorem where a fixed
alphabet Σ is considered. Using the well-known duality between boolean algebras and Stone
spaces, Pippenger [15] demonstrated that the boolean algebra Reg(Σ) of all regular languages
over Σ dualises to the underlying Stone space of the free profinite monoid on Σ. Later,
Gehrke, Grigorieff, and Pin [8] considered local varieties of languages over Σ, i.e. boolean
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subalgebras of Reg(Σ) closed under left and right derivatives, and characterised them as sets
of regular languages over Σ definable by profinite equations.

In the recent work of Adámek, Milius, Myers, and Urbat [1, 2] a categorical approach
to Eilenberg-type theorems was presented, covering many of the aforementioned results
uniformly. The leading idea is to take two varieties of (possibly ordered) algebras C and D

whose full subcategories on finite algebras are dually equivalent. Local varieties of languages
are then modelled as coalgebras in C, and monoids as monoid objects in D. The main
result of [1], the General Local Variety Theorem, states that local varieties of languages
over Σ in C (= sets of regular languages over Σ closed under C-algebraic operations and
left and right derivatives) correspond to local pseudovarieties of Σ-generated D-monoids
(= sets of Σ-generated finite D-monoids closed under quotients and subdirect products).
The General Variety Theorem of [2] establishes a correspondence between (non-local)
varieties of languages in C and pseudovarieties of D-monoids. Then the classical Eilenberg
theorem is recovered by taking C = boolean algebras and D = sets, and other choices of C
and D give its modifications due to Pin, Polák and Reutenauer along with new concrete
Eilenberg-type correspondences.

The present paper investigates from a categorical perspective various important concepts
of algebraic automata theory whose precise connection was left open in [1, 2], notably
(a) the connection between local pseudovarieties of D-monoids and profinite D-monoids;
(b) the connection between the local and non-local versions of the General Variety Theorem.

Our strategy is to organise all local varieties of languages into a category LAN whose
objects are pairs (Σ, V ) of a finite alphabet Σ and a local variety of languages over Σ in
C. With a suitable choice of morphisms in LAN (see Definition 3.7) the projection functor
p : LAN→ Free(MonD) into the category of finitely generated free D-monoids, mapping
(Σ, V ) to the free D-monoid over Σ, is an opfibration. Similarly one can form the category
LPV of local pseudovarieties of D-monoids and the category PFMon of finitely generated
profinite D-monoids, which again yield opfibrations over Free(MonD) as shown below:

LAN

p
''

∼= // LPV

q

��

∼= // PFMon

q′ww

Free(MonD).

Next we make two crucial observations. Firstly, we observe that the global sections,
i.e. right inverse functors, of the above opfibrations p and q′ correspond by definition to
varieties of languages in C and profinite equational theories of D-monoids, respectively.
Secondly, we prove that the three opfibrations are isomorphic. The isomorphism LAN ∼=
LPV is essentially the General Local Variety Theorem of [1], and the isomorphism LPV ∼=
PFMon is based on a limit construction. It follows that the global sections of p and q′ are
in bijection, from which we derive our main result:

There is a bijective correspondence between (i) varieties of languages in C, (ii) pseudo-
varieties of D-monoids, and (iii) profinite equational theories of D-monoids.

The bijection (ii)↔(iii) amounts to a categorical presentation of the well-known Reiterman-
Banaschewski theorem [17, 5]. And (i)↔(ii) gives an independent proof of the General
Variety Theorem of [2] based on its local version; see also Remark 5.6. Furthermore, the
flexibility of our fibrational setting leads to a number of additional new results without extra
effort. For example, by replacing the category Free(MonD) with an arbitrary subcategory
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52 A Fibrational Approach to Automata Theory

C ↪→ Free(MonD) we obtain a generalised version of Straubing’s variety theorem for C-
varieties of languages, as well as a new local variety theorem for fully invariant local varieties
of languages, i.e. local varieties closed under preimages of endomorphisms of free monoids.

Beyond these concrete results, we believe that the main contribution of the present paper
is a further illumination of the intrinsic duality deeply hidden in algebraic language theory,
most notably of the subtle interweavings of local and non-local structures, and the role of
profinite theories.

2 Preliminaries

In this section we review the categorical approach to algebraic automata theory developed
in [1, 2]. The idea is to interpret local varieties of languages inside a variety of algebras C,
and to relate them to finite monoids in another variety of (possibly ordered) algebras D

which is predual to C. The latter means that the full subcategories Cf and Df on finite
algebras are dually equivalent. Note that by an ordered algebra we mean an algebra (over
a finitary signature Γ) with a poset structure on its underlying set making all operations
monotone. Morphisms of ordered algebras are order-preserving Γ-homomorphisms. A variety
of ordered algebras is a class of ordered algebras specified by inequalities t1 ≤ t2 between
Γ-terms.

I Assumptions 2.1. In the following C and D are predual varieties of algebras, where
D-algebras may be ordered, subject to the following conditions:
1. C and D are locally finite, i.e. every free algebra on a finite set is finite;
2. epimorphisms in D are surjective;
3. D is entropic1, i.e. given an m-ary operation σ and an n-ary operation τ in the signature

of D and variables xij (i = 1, . . . ,m, j = 1, . . . , n), the following equation holds in D:

σ(τ(x11, . . . , x1n), . . . , τ(xm1, . . . , xmn)) = τ(σ(x11, . . . , xm1), . . . , σ(x1n, . . . , xmn)).

I Notation 2.2. We write Φ: Set→ C and Ψ: Set→ D for the left adjoints to the forgetful
functors |−| : C→ Set and |−| : D→ Set, respectively. By 1C = Φ1 and 1D = Ψ1 denote
the free algebras over the singleton set.

I Example 2.3. The following pairs of varieties C/D satisfy our assumptions. The details of
the first three examples can be found in [11].
1. BA/Set: The Stone Representation Theorem exhibits a dual equivalence between the

categories of finite boolean algebras and finite sets. It assigns to any finite boolean algebra
B the set BA(B,2) of all homomorphisms into the two-chain 2. The dual of h : A→ B

is given by precomposition with h, i.e. f ∈ BA(B,2) is mapped to f ◦ h ∈ BA(A,2).
2. DLat/Pos: Similarly, the Birkhoff Representation Theorem exhibits a dual equivalence

between the categories of finite distributive lattices with 0 and 1 and finite posets. It
assigns to a finite distributive lattice L the poset DLat(L,2), ordered pointwise, where
2 is the two-chain. On morphisms the dual equivalence again acts by precomposition.

3. SLat/SLat: The category of finite semilattices with 0 is self-dual: the dual equivalence
maps a finite semilattice S to the semilattice SLatf (S,2) whose join is taken pointwise.

1 In the unordered case, entropic varieties are precisely the categories of Eilenberg-Moore algebras for a
commutative finitary monad on Set, see [12]
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4. Z2-Vec/Z2-Vec: The category of finite-dimensional vector spaces over any field F is
self-dual, by mapping a vector space V to its dual space F -Vec(V, F ). By restricting F
to the binary field Z2, the category is also locally finite.

I Remark 2.4. Given a small finitely complete and cocomplete category A we denote
by Y : A → IndA and Yop : A → ProA the ind- and pro-completion of A, i.e. the free
completion under filtered colimits and cofiltered limits, respectively. There is an adjunction
F a U : ProA→ IndA such that Yop = F ◦ Y and Y = U ◦ Yop.

A

Yop

""

Y

||

IndA
F

++

U

kk ⊥ ProA

Applying this to A = Cf with Ind(Cf ) = C and Pro(Cf ) = Ind(Cop
f )op ∼= Ind(Df )op = Dop, we

see that the equivalence Cf ∼= D
op
f extends to an adjunction between C and Dop. We denote

both the equivalence Cf ∼= D
op
f and the induced adjunction between C and Dop by

S a P : Dop
f

∼=−→ Cf and S a P : Dop → C.

2.1 Local varieties of languages in C

The coalgebraic treatment of automata roots in the observation that a deterministic auto-
maton without an initial state is a coalgebra γ = 〈γ1st, γ2nd〉 : Q→ 2×QΣ for the set functor
T 0

Σ = 2 × (−)Σ. Here Σ is the finite input alphabet, 2 := {yes, no}, γ1st : Q → 2 is the
characteristic function of the final states, and γ2nd : Q→ QΣ is the transition map. In the
following we consider automata in the category C, which requires to replace the set 2 by
a suitable “output” object in C. Observe that the dual adjunction S a P : Dop → C has
dualising objects OC := P1D and OD := S1C, that is, for all M ∈ D and Q ∈ C we have

|PM | ∼= C(1C, PM) ∼= D(M,OD) and |SQ| ∼= D(1D, SQ) ∼= C(Q,OC).

Taking M = 1D we see that the set |OC| is isomorphic to |OD|. Note that in each of the
categories C/D in Example 2.3 the objects OC and OD have a two-element carrier. Motivated
by this observation, we replace the set 2 by the object OC to define automata in C.

I Definition 2.5. A Σ-automaton in C is a coalgebra γ = 〈γ1st, γ2nd〉 : Q→ OC ×QΣ for
the endofunctor TΣ := OC×(−)Σ on C, where (−)Σ is the Σ-fold product. A subautomaton
of (Q, γ) is a subcoalgebra of (Q, γ), represented by an injective coalgebra homomorphism
into Q. An automaton is called finite if the object Q of states is finite, and locally finite if
it is a filtered colimit of finite Σ-automata. The rational fixpoint ρTΣ is the filtered colimit
of all finite Σ-automata. The categories of Σ-automata, finite Σ-automata and locally finite
Σ-automata in C are denoted by AutΣ, AutfΣ and Autlf Σ, respectively. Their morphisms
are coalgebra homomorphisms.

In [13, 3] it is shown that the rational fixpoint ρTΣ is the terminal locally finite coalgebra
(i.e. the terminal object of Autlf Σ), with the structure map ρTΣ

ζ−→ TΣ(ρTΣ) an isomorphism.
The rational fixpoint of the set functor T 0

Σ = 2× (−)Σ is the automaton of regular languages:
the states of ρT 0

Σ form the set Reg(Σ) of regular languages over Σ, the final states are those
languages containing the empty word ε, and the transitions are given by left derivatives, that
is, L a−→ a−1L = {w ∈ Σ∗ | aw ∈ L } for L ∈ Reg(Σ) and a ∈ Σ.
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54 A Fibrational Approach to Automata Theory

I Remark 2.6. To simplify the presentation, we assume in the following that |OC| = |OD| = 2.
The main reason is that in this case the rational fixpoint ρTΣ is a lifting of the above automaton
of regular languages to C, see the next proposition. Without this assumption one needs to
replace regular languages by regular behaviors, i.e. functions Σ∗ → |OC| realised by finite
Moore automata with output set |OC|. See also the discussion in [2, Section V].

I Proposition 2.7 (see [1]). The rational fixpoint ρTΣ is carried by the set Reg(Σ). Its
coalgebra structure ρTΣ

ζ−→ OC × (ρTΣ)Σ is given by the C-morphisms

ζ1st(L) =
{

yes if ε ∈ L;
no otherwise,

and ζ2nd(L)(a) = a−1L.

In the light of this proposition we also write Reg(Σ) for the rational fixpoint ρTΣ.

I Example 2.8. For C = BA, the rational fixpoint of TΣ is the boolean algebra Reg(Σ)
(w.r.t. ∪, ∩, (−){, ∅ and Σ∗), endowed with the automata structure given by the boolean
homomorphisms ζ1st and ζ2nd. Similarly, for the other categories C of Example 2.3 the
algebraic structure of ρTΣ = Reg(Σ) is (i) ∪, ∩, ∅, and Σ∗ for C = DLat; (ii) ∪ and ∅ for
C = SLat; (iii) symmetric difference L⊕ L′ = (L \ L′) ∪ (L′ \ L) and ∅ for C = Z2-Vec.

I Definition 2.9. A local variety of languages over Σ in C is a subautomaton V of
ρTΣ closed under right derivatives, i.e. L ∈ |V | implies La−1 = {w ∈ Σ∗ | wa ∈ L } ∈ |V |
for all a ∈ Σ. The

⋂
-semilattices of all (finite) local varieties of languages over Σ in C are

denoted by LANf
Σ and LANΣ, respectively.

Observe that a local variety of languages is closed under (i) the C-algebraic operations of
ρTΣ, being a subalgebra of ρTΣ in C, and (ii) left derivatives, being a subcoalgebra of ρTΣ.
For C = DLat (C = BA) a local variety of languages is precisely a (boolean) quotienting
algebra of languages in the sense of Gehrke et al. [8]: a set of regular languages over Σ closed
under finite union, finite intersection (and complement) as well as left and right derivatives.

2.2 D-monoids
Every entropic variety D of (ordered) algebras can be equipped with a symmetric monoidal
closed structure (D,⊗,1D), see e.g. [4] and [6, Theorem 3.10.1]. The unit 1D is the free
one-generated algebra and ⊗ is the usual tensor product of algebras, giving rise to a natural
bijection between morphisms and bimorphisms in D:

Hom(A⊗B,C) ∼= Bihom(A×B,C).

Recall that a bimorphism f : A×B → C in D is a set-theoretic function from A×B to C
such that f(a,−) : B → C and f(−, b) : A→ C are D-morphisms for any a ∈ A and b ∈ B.

Since the tensor product represents bimorphisms, the monoid objects of the monoidal
category (D,⊗,1D) correspond to the following algebraic concept:

I Definition 2.10. A D-monoid (M, •, e) is an object M of D equipped with a monoid
structure (|M |, •, e) in Set whose multiplication • : M ×M →M is a D-bimorphism. By a
morphism f : (M, •, e)→ (M ′, •′, e′) of D-monoids is meant a morphism f : M →M ′ of D
that is also a monoid morphism between the underlying monoids in Set. By MonfD and
MonD we denote the categories of (finite) D-monoids and all D-monoid morphisms.
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I Example 2.11. For the categories D = Set, Pos, SLat and Z2-Vec of Example 2.3, the
D-monoids are precisely ordinary monoids, ordered monoids, idempotent semirings (with 0
and 1) and associative algebras over the field Z2, respectively.

I Remark 2.12.
1. In D we choose the factorisation system (epi, strong mono). Recall that epimorphisms in

D are precisely the surjective morphisms by Assumption 2.1.2. Strong monomorphisms
are precisely the injective morphisms if D is a variety of algebras, and embeddings
(i.e. injective order-reflecting morphisms) if D is a variety of ordered algebras. Hence

every D-morphism f : A → B factorises as A
Im(f)

// // f [A] // i // B where Im(f) is the
restriction of f to the image f [A] and i is injective (and order-reflecting). Further, the
factorisation system has the fill-in property: given a surjective morphism e, an injective
(and order-reflecting) morphism m and two morphisms u, v with ue = mv, there is a
unique morphism d such that u = md and v = de.

2. The factorisation system of D lifts to MonD. Hence submonoids are represented by
injective (order-reflecting) D-monoid morphisms, and quotient monoids by surjective
D-monoid morphisms.

Since MonD is a variety of (ordered) algebras, the forgetful functor MonD→ Set has a
left adjoint constructing free D-monoids. Here is a concrete construction:

I Proposition 2.13 (see [1]). The free D-monoid on a set Σ is carried by the D-object ΨΣ∗.
The monoid multiplication • extends the concatenation of words in Σ∗, and the unit is ε.

A finite Σ-generated D-monoid is a finite quotient eM : ΨΣ∗ � M of the free D-
monoid on Σ. Given another finite Σ-generated D-monoid eN : ΨΣ∗ � N we write M ≤ N if
there is a D-monoid morphism f : N →M satisfying eM = feN . With respect to this order
all (isomorphism classes of) finite Σ-generated D-monoids form a poset Quof (ΨΣ∗). Observe
that Quof (ΨΣ∗) is a join-semilattice: the join of M and N is the subdirect product, viz.
the image of the morphism 〈eM , eN 〉 : ΨΣ∗ →M ×N given by

M ∨N := { (eM (x), eN (x)) ∈M ×N | x ∈ ΨΣ∗ }.

IDefinition 2.14. A local pseudovariety ofD-monoids over Σ is an ideal of Quof (ΨΣ∗),
i.e. a set of finite Σ-generated D-monoids closed under quotients and subdirect products. By
LPVΣ we denote the

⋂
-semilattice of local pseudovarieties of D-monoids over Σ.

I Theorem 2.15 (General Local Variety Theorem [1]). For each finite alphabet Σ,

LANf
Σ
∼= Quof (ΨΣ∗) and LANΣ ∼= LPVΣ.

I Remark 2.16. 1. The first isomorphism takes a finite local variety OC
γ1st

←−− V γ2nd

−−−→ V Σ

in C and applies the equivalence functor S : Cf
∼=−→ D

op
f to its coalgebra structure. This

yields an algebra 1D
∼= S(OC) Sγ1st

−−−→ SV
Sγ2nd

←−−−− S(V Σ) ∼=
∐

Σ SV for the functor
FΣ = 1D +

∐
Σ(−) on D. Since the free D-monoid ΨΣ∗ also carries the initial algebra

for FΣ, there is a unique FΣ-algebra homomorphism eSV : ΨΣ∗ → SV into the algebra
constructed above. One then shows that eSV is surjective and there is a unique D-monoid
structure on SV making eSV a D-monoid morphism. We call eSV : ΨΣ∗ � SV the
(finite Σ-generated) D-monoid corresponding to V .
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56 A Fibrational Approach to Automata Theory

2. The second isomorphism follows from the observation that (a) LPVΣ is by definition the
ideal completion of Quof (ΨΣ∗), and (b) LANΣ is isomorphic to the ideal completion of
LANf

Σ. Indeed every finite local variety of languages is a compact element of LANΣ,
and every local variety is the directed union of its finite local subvarieties. Hence the
isomorphism LANΣ ∼= LPVΣ maps a local variety of languages V ↪→ ρTΣ to the local
pseudovariety of all finite Σ-generated D-monoids that correspond to some finite local
subvariety of V . The inverse isomorphism maps a local pseudovariety P of D-monoids
over Σ to the directed union of all finite local varieties of languages in C that correspond
to some element of P .

2.3 Preimages under D-monoid morphisms
Recall from Remark 2.6 that we assume |OC| = |OD| = 2. Hence a language L ⊆ ∆∗
may be identified with a morphism L : Ψ∆∗ → OD of D, viz. the adjoint transpose of the
characteristic function ∆∗ → |OD|. Given this identification, the preimage of L under a
D-monoid morphism f : ΨΣ∗ → Ψ∆∗ is the composite Lf : ΨΣ∗ → Ψ∆∗ → OD. By the
adjunction S a P : Dop → C, the morphism Pf is essentially the preimage function, because

|Pf | ∼= D(f,OD) : D(Ψ∆∗, OD)→ D(ΨΣ∗, OD).

In [2] it was shown that |Pf | restricts to a C-morphism f−1 : Reg(∆)→ Reg(Σ), taking any
language L : Ψ∆∗ → OD in Reg(∆) to its f -preimage. This observation makes the following
definition evident:

I Definition 2.17. Let f : ΨΣ∗ → Ψ∆∗ be a D-monoid morphism and V and W local
varieties of languages over Σ and ∆, respectively. Then V is said to be closed under
f-preimages of languages in W if Diagram 1 below commutes for some C-morphism h.

W
��

��

h // V
��

��

Reg(∆)
f−1
// Reg(Σ)

Diagram 1

ΨΣ∗ f
//

eM

����

Ψ∆∗

eN

����

M
g

// N

Diagram 2

Here is a dual characterisation of preimage closure:

I Lemma 2.18 (see [2]). In Definition 2.17 let V and W be finite, and let eM : ΨΣ∗ �M

and eN : Ψ∆∗ � N be the finite D-monoids corresponding to V and W , respectively. Then
Diagram 1 commutes iff Diagram 2 with g = Sh commutes.

3 Fibrations for Languages and Monoids

We are ready to present our fibrational setting for (local) varieties of languages in C and
(local) pseudovarieties of D-monoids. For general information on fibred categories the reader
is referred to [10]. Let us briefly recall some basic vocabulary:

I Definition 3.1. Let p : E→ B be a functor.
1. An object X ∈ E is above I ∈ B if pX = I, and similarly a morphism f in E is above a

morphism u in B if pf = u. A morphism f above idI is called vertical (over I).
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2. The fibre over I ∈ B is the subcategory EI = p−1(I) of E whose objects are the objects
above I and whose morphisms are the vertical morphisms over I.

3. A morphism f : X → Y of E is opcartesian over u : I → J in B if pf = u and for
every morphism g : X → Z in E above wu for w : J → pZ, there is a unique morphism
h : Y → Z above w with g = hf .

4. p : E→ B is an opfibration over B if for every X ∈ E and u : pX → J in B there is an
opcartesian morphism f : X → Y above u, called an opcartesian lifting of u.

5. Two opfibrations p : E→ B and p′ : E′ → B are isomorphic if there is an isomorphism
i : E ∼= E′ preserving indices, that is, p′i = p.

6. A global section of an opfibration p : E→ B is a functor s : B→ E with es = id.
7. A poset opfibration is an opfibration such that for each I ∈ B the fibre EI is a poset.
8. A B-indexed poset is a functor H : B→ Pos.

All opfibrations we consider below are poset opfibrations. They are effectively inter-
changeable with indexed posets via the Grothendieck construction:
1. Given a poset opfibration p : E → B one defines an indexed poset Hp : B → Pos as

follows. Note first that every B-morphism I
u−→ J with an object X above I has a unique

opcartesian lifting X f−→ u∗X because EJ is a poset. Then Hp is defined by

I 7→ EI and
(
I
u−→ J

)
7→
(
EI

u∗−→ EJ

)
where u∗ maps X to u∗X.

2. Conversely, given an indexed poset H : B→ Pos, define the Grothendieck completion
of H to be the category

∫
H with

objects (I, x) where I ∈ B and x ∈ HI;
morphisms (I, x) u−→ (J, y) where I u−→ J is a morphism in B with Hu(x) ≤HJ y.

Then the projection functor pH :
∫
H → B mapping (I, x) to I and (I, x) u−→ (J, y) to

I
u−→ J is an opfibration.

The Grothendieck construction gives rise to an equivalence between suitable 2-categories of
indexed posets and opfibrations. We only need the following weaker statement:

I Theorem 3.2 (Grothendieck). Every poset opfibration p : E→ B is isomorphic to pHp
: E→

B, and every indexed poset H : B → Pos is naturally isomorphic to HpH : B → Pos.
Furthermore, if H,H′ : B→ Pos are two naturally isomorphic indexed posets then pH, pH′
are isomorphic opfibrations.

3.1 Local pseudovarieties of D-monoids as an opfibration
In this section we organise the local pseudovarieties of D-monoids into an opfibration
LPV → Free(MonD), or equivalently into an indexed poset Free(MonD) → Pos. The
base category Free(MonD) is the category of finitely generated free D-monoids: its objects
are finite sets Σ, and its morphisms Σ f−→ ∆ are all D-monoid morphisms ΨΣ∗ f−→ Ψ∆∗
between the free D-monoids on Σ and ∆, respectively. Hence Free(MonD) is dual to the
Lawvere theory of the variety MonD.

I Definition 3.3. The indexed poset (−)] : Free(MonD)→ Pos is defined as follows:
1. To each finite set Σ it assigns the poset Σ] = LPVΣ of all local pseudovarieties of

D-monoids over Σ, ordered by reverse inclusion ⊇.
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58 A Fibrational Approach to Automata Theory

2. To each D-monoid morphism f : ΨΣ∗ → Ψ∆∗ it assigns the monotone map f] : LPVΣ →
LPV∆, where for P ∈ LPVΣ the local pseudovariety f](P ) ∈ LPV∆ consists of all finite
∆-generated D-monoids N with eNf = geM for some M ∈ P and some morphism g; see
Diagram 2.

I Lemma 3.4. (−)] is a well-defined functor.

The Grothendieck construction applied to the indexed poset (−)] : Free(MonD)→ Pos
yields the following equivalent opfibration:

I Definition 3.5. The category LPV of local pseudovarieties of D-monoids has

objects (Σ, P ) where P is a local pseudovariety of D-monoids over Σ;
morphisms (Σ, P ) f−→ (∆, Q) where f : ΨΣ∗ → Ψ∆∗ is a D-monoid morphism such

that for every N ∈ Q there exists M ∈ P and g : M → N subject to Diagram 2.

The projection LPV q−→ Free(MonD) mapping (Σ, P ) to Σ and (Σ, P ) f−→ (∆, Q) to f is
called the opfibration of local pseudovarieties of D-monoids.

3.2 Local varieties of languages in C as an opfibration
In complete analogy to Definition 3.3 and 3.5 we can define an indexed poset and its
corresponding opfibration representing local varieties of languages in C.

I Definition 3.6. The indexed poset (−)∗ : Free(MonD)→ Pos is defined as follows:
1. To each finite set Σ it assigns the poset Σ∗ = LANΣ of all local varieties of languages

over Σ in C, ordered by reverse inclusion ⊇.
2. To each D-monoid morphism f : ΨΣ∗ → Ψ∆∗ it assigns the monotone map f∗ : LANΣ →

LAN∆, where for V ∈ LANΣ the local variety f∗(V ) ∈ LAN∆ is the directed union of
all local varieties W satisfying Diagram 1 for some h. In other words, f∗(V ) is the largest
local variety of languages over ∆ such that V is closed under f -preimages of languages
in f∗(V ).

The Grothendieck construction gives the following opfibration:

I Definition 3.7. The category LAN of local varieties of languages in C has

objects (Σ, V ) where V is a local variety of languages over Σ in C;
morphisms (Σ, V ) f−→ (∆,W ) where f : ΨΣ∗ → Ψ∆∗ is a D-monoid morphism such

that V is closed under f -preimages of languages in W .

The projection LAN p−→ Free(MonD) mapping (Σ, V ) to Σ and (Σ, V ) f−→ (∆,W ) to f is
called the opfibration of local varieties of languages in C.

The General Local Variety Theorem (see Theorem 2.15) implies that the two indexed
posets (−)], (−)∗ : Free(MonD)→ Pos of Definition 3.3 and 3.6 are naturally isomorphic.
Indeed, recall from Remark 2.16 that the isomorphism LPVΣ ∼= LANΣ sends a local
pseudovariety P ∈ LPVΣ to the directed union of all finite local varieties of languages over
Σ in C corresponding to the finite Σ-generated D-monoids in P . From this and Lemma 2.18
we conclude that the diagram below commutes for all D-monoid morphisms f : ΨΣ∗ → Ψ∆∗.

LPVΣ

f]

��

∼= // LANΣ

f∗

��

LPV∆ ∼=
// LAN∆
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Hence, by Theorem 3.2, we get an isomorphism between the corresponding opfibrations:

I Theorem 3.8. The opfibrations p : LAN→ Free(MonD) and q : LPV→ Free(MonD)
are isomorphic.

I Definition 3.9. By a variety of languages in C is meant a global section of p, i.e. a
functor V : Free(MonD)→ LAN with pV = id.

In more concrete terms, a variety of languages in C is given by a collection of local varieties
VΣ ∈ LANΣ (where Σ ranges over all finite alphabets) such that for every f : ΨΣ∗ → Ψ∆∗
the local variety VΣ is closed under f -preimages of languages in V∆. For C = BA the above
definition corresponds to Eilenberg’s original concept, see Introduction. Similarly, varieties
of languages in DLat, SLat and Z2-Vec are precisely the positive varieties of Pin [14], the
disjunctive varieties of Polák [16] and the xor varieties of Reutenauer [18], respectively.

Theorem 3.8 implies that every global section of p : LAN→ Free(MonD) corresponds
uniquely to a global section of q : LPV → Free(MonD). In the next section we will see
that also the global sections of q admit a concrete interpretation.

4 Profinite D-Monoids

A profinite D-monoid is a cofiltered limit of finite D-monoids, and the profinite com-
pletion M̂ of a D-monoid M is the cofiltered limit of the diagram of all its finite quotients.
Since limits in MonD are formed on the level of Set, every profinite D-monoid is equipped
with a profinite topology, i.e. it can be viewed as a Stone space if D is a variety of algebras,
resp. an ordered Stone space if D is a variety of ordered algebras.2 By ProMonfD denote the
category of profinite D-monoids with continuous (order-preserving) D-monoid morphisms.

I Theorem 4.1. 1. ProMonfD is the pro-completion of the category MonfD of finite
D-monoids, cf. Remark 2.4.

2. The profinite completionM 7→ M̂ gives a left adjoint to the forgetful functor ProMonfD→
MonD.

The first item follows from [11, Proposition VI.2.4 and Remark VI.2.5]. The argument given
there for varieties of algebras also applies to ordered algebras. The second item follows from
a standard argument for ordinary monoids, see e.g. [19, Theorem 3.2.7].

I Example 4.2. For our predual categories C/D of Example 2.3 we obtain the following
descriptions of the categories ProDf , MonD and ProMonfD, cf. [11, Theorem VI.2.9].

C D ProDf MonD ProMonfD

BA Set Stone Mon Stone(Mon)
DLat Pos OStone OMon (to be characterised)
SLat SLat Stone(SLat) ISRing Stone(ISRing)
Z2-Vec Z2-Vec Stone(Z2-Vec) Z2-Alg Stone(Z2-Alg)

Stone and OStone are the categories of (ordered) Stone spaces and continuous (order-
preserving) maps. The categories in the fourth column are the categories of monoids,
ordered monoids, idempotent semirings and Z2-algebras, respectively; see Example 2.11. By

2 An (ordered) Stone space is a compact space such that for every x 6= y (resp. x 6≤ y) there exists a
clopen (upper) set containing x but not y.
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Stone(A) for a variety of algebras A we mean the category of A-algebras in Stone. For
example, Stone(Mon) is the category of monoids equipped with a Stone topology (making
the monoid multiplication continuous) and continuous monoid morphisms.

4.1 Local pseudovarieties of D-monoids vs. profinite D-monoids
In this section we show how to identify local pseudovarieties of D-monoids over Σ with
Σ-generated profinite D-monoids. In the following quotients of profinite D-monoids are
meant to be represented by surjective continuous D-monoid morphisms. A Σ-generated
profinite D-monoid is a quotient of Ψ̂Σ∗, the profinite completion of the free D-monoid
ΨΣ∗. Note that, by Theorem 4.1, Ψ̂Σ∗ is the free profinite D-monoid on the free D-monoid
ΨΣ∗ w.r.t. the forgetful functor ProMonfD → MonD, and hence also the free profinite
D-monoid on the set Σ w.r.t. the composite forgetful functor ProMonfD→MonD→ Set.
The following standard facts will be useful.

I Lemma 4.3 (see e.g. [19, Chapter 3]). Let F : J→ KHaus be a cofiltered diagram in the
category of compact Hausdorff spaces and continuous functions.
1. If every Fi

Ff−−→ Fj for i f−→ j is surjective, then the limit projections LimF
πi−→ Fi are

also surjective.
2. If ϕ : ∆X ⇒ F is a cone over F such that every projection ϕi : X → Fi is surjective, then

the mediating morphism X → LimF is also surjective.

I Remark 4.4. 1. To each local pseudovariety P ∈ LPVΣ we associate a Σ-generated
profinite D-monoid as follows. Note first that P defines a cofiltered diagram in ProMonD
via the projection (e : ΨΣ∗ �M) 7→M . Since the connecting morphisms are surjective,
the above lemma implies that every limit projection LimP →M for M ∈ P is surjective.
Moreover, given P ⊆ P ′ in LPVΣ, there is a surjective mediating morphism h : LimP ′ →
LimP . In particular, taking P ′ to be the local pseudovariety of all finite quotients of
ΨΣ∗ with LimP ′ = Ψ̂Σ∗ we get a surjective morphism Ψ̂Σ∗ � LimP , i.e. a Σ-generated
profinite D-monoid.

2. Conversely, to each Σ-generated profinite D-monoid eΣ : ΨΣ∗ � FΣ we associate a local
pseudovariety VFΣ ∈ LPVΣ as follows: VFΣ consists of all finite Σ-generated D-monoids
of the form ΨΣ∗ η

// Ψ̂Σ∗ eΣ // // FΣ eM // // M , where η is the universal arrow of the
adjunction between ProMonfD and MonD (see Theorem 4.1) and M is any finite
quotient of FΣ. Observe that such a composite eMeΣη is always surjective: since Ψ̂Σ∗ is
the limit of all finite quotients of ΨΣ∗, and M is finite (hence a finitely copresentable
object of ProMonD), the morphism eMeΣ factorises through some limit projection πN ,
where N is a finite quotient of ΨΣ∗:

ΨΣ∗ η
//

## ##

Ψ̂Σ∗

πN

����

eΣ // // FΣ

eM

����

N
f
// // M

It is not difficult to see that the two constructions of Remark 4.4 are mutually inverse.
More precisely:
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I Theorem 4.5. Let Σ be a finite set.
1. Every Σ-generated profinite D-monoid FΣ corresponds uniquely to a local pseudovariety

VFΣ of D-monoids over Σ. That is,

Quo(Ψ̂Σ∗) ∼= LPVΣ,

where Quo(Ψ̂Σ∗) denotes the poset of Σ-generated profinite D-monoids.
2. Let f : ΨΣ∗ → Ψ∆∗ be a D-monoid morphism, FΣ a Σ-generated profinite D-monoid

and F∆ a ∆-generated profinite D-monoid. Then the right-hand diagram below commutes
for some h iff for every N ∈ VF∆ there is some M ∈ VFΣ and a morphism hN making
the left-hand diagram commute:

ΨΣ∗ f
//

����

Ψ∆∗

����

M
hN

// N

Ψ̂Σ∗ f̂
//

����

Ψ̂∆∗

����

FΣ
h
// F∆

From the opfibration q : LPV → Free(MonD) we thus get the following isomorphic
opfibration:

I Definition 4.6. The category PFMon has

objects (Σ, FΣ) where FΣ is a Σ-generated profinite D-monoid;
morphisms (Σ, FΣ) f−→ (∆, F∆) where f : ΨΣ∗ → Ψ∆∗ is a D-monoid morphism

making the following diagram commute for some h:

Ψ̂Σ∗ f̂
//

����

Ψ̂∆∗

����

FΣ
h
// F∆

(1)

The projection PFMon q′−→ Free(MonD) sending (Σ, FΣ) to Σ and (Σ, FΣ) f−→ (∆, F∆)
to f is called the opfibration of finitely generated profinite D-monoids.

I Corollary 4.7. The opfibrations q : LPV→ Free(MonD) and q′ : PFMon→ Free(MonD)
are isomorphic.

4.2 Pseudovarieties of D-monoids vs. profinite equational theories
By a pseudovariety of D-monoids is meant a class of finite D-monoids closed under
submonoids, quotients and finite products. In this section we relate pseudovarieties of
D-monoids to profinite equational theories of D-monoids.

I Definition 4.8. A profinite equational theory of D-monoids is a global section
T : Free(MonD)→ PFMon of the opfibration q′ : PFMon→ Free(MonD).

More explicitly, a profinite equational theory associates to each finite set Σ a Σ-generated
profinite monoid eΣ : Ψ̂Σ∗ � FΣ such that, for all f : ΨΣ∗ → Ψ∆∗, diagram (1) commutes
for some h.
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I Remark 4.9.
1. To each profinite equational theory T with T Σ = (Σ, FΣ) we associate a pseudovariety

V of D-monoids as follows: V consists of all finite D-monoids M such that for all D-
monoid morphisms f : Ψ̂Σ∗ →M there exists a (necessarily unique) D-monoid morphism
f : FΣ→M with feΣ = f .

Ψ̂Σ∗

f
""

eΣ // // FΣ

f

��

M

2. Conversely, to each pseudovariety V of D-monoids we associate a profinite equational
theory T with T Σ = (Σ, FΣ) as follows: given Σ, form the local pseudovariety PΣ of all
Σ-generated finite D-monoids e : ΨΣ∗ �M with M ∈ V. Then FΣ is the Σ-generated
profinite D-monoid defined by PΣ, see Remark 4.4 and Theorem 4.5.

Again, these constructions are mutually inverse:

I Theorem 4.10. The maps T 7→ V and V 7→ T define a bijective correspondence between
profinite equational theories and pseudovarieties of D-monoids.

I Remark 4.11. This theorem can be viewed as a categorical presentation of the well-known
Reiterman-Banaschewski correspondence [17, 5]. The difference lies in the definition of a
profinite theory: Reiterman and Banaschewski work with profinite equations (i.e. pairs of
elements of free profinite monoids) while we work with quotients of free profinite monoids.

5 Eilenberg-type Correspondences

Putting the results of our paper together we will now derive a number of Eilenberg-type
theorems. Each of these theorems is an immediate consequence of the isomorphisms we
established between our opfibrations p, q and q′ (see the diagram in the Introduction) and
the characterisation of their global sections. First, by Theorem 4.5 we get another version of
the General Local Variety Theorem, i.e. Theorem 2.15.

I Theorem 5.1 (General Local Variety Theorem II). There is a one-to-one correspondence
between local varieties of languages over Σ in C and Σ-generated profinite D-monoids:

LANΣ ∼= Quo(Ψ̂Σ∗).

By Theorem 3.8, Corollary 4.7, and Theorem 4.10, we recover the main result of [2]:

I Theorem 5.2 (General Variety Theorem). There is a one-to-one correspondence between
varieties of languages in C and pseudovarieties of D-monoids.

An interesting generalisation of this theorem emerges by restricting Free(MonD) to a
subcategory. Recall that the pullback in Cat of an opfibration p : E→ B along any functor
F : B′ → B is again an opfibration, see e.g. [10, Lemma 1.5.1].

I Definition 5.3. For a subcategory C ↪→ Free(MonD), a C-variety of languages in
C is a global section of the opfibration pC : LANC → C obtained as the pullback of the
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opfibration p along the inclusion. Similarly, a profinite equational C-theory of D-
monoids is a global section of the opfibration q′C : PFMonC → C obtained as the pullback
of q′ : PFMon→ Free(MonD) along the inclusion.

LANC
� � //

pC

��

LAN

p

��

C �
�

// Free(MonD)

PFMonC
� � //

q′C
��

PFMon

q′

��

C �
�

// Free(MonD)

More explicitly, a profinite equational C-theory associates to each Σ ∈ C a Σ-generated
profinite monoid eΣ : Ψ̂Σ∗ � FΣ such that, for all f : ΨΣ∗ → Ψ∆∗ in C, diagram (1)
commutes for some h. Similarly, a C-variety of languages determines a family (VΣ)Σ∈C,
where VΣ is a local variety of languages over Σ in C and, for each f : ΨΣ∗ → Ψ∆∗ in C,
the local variety VΣ is closed under f -preimages of languages in V∆. For the case where
C = BA, D = Set and the subcategory C contains all objects of Free(Mon), this definition
coincides with the concept of a C-variety of languages introduced by Straubing [20]. He also
proved a special case of Theorem 5.4 below. Observe that since the opfibrations p and q′ are
isomorphic, so are their pullbacks pC and q′C. Therefore:

I Theorem 5.4 (General Variety Theorem for C-varieties of languages). There is a one-to-one
correspondence between C-varieties of languages in C and profinite equational C-theories of
D-monoids.

As an application of this theorem, let us choose C to be the full subcategory of
Free(MonD) on a single object Σ. Then a C-variety of languages in C is precisely a
local variety of languages over Σ in C closed under preimages of D-monoid endomorphisms
f : ΨΣ∗ → ΨΣ∗. We call such a local variety fully invariant. A profinite equational
C-theory consists of a single Σ-generated profinite D-monoid e : Ψ̂Σ∗ � FΣ such that, for
all D-monoid endomorphisms f : ΨΣ∗ → ΨΣ∗, ef̂ factors through e.

Ψ̂Σ∗ f̂
//

e
����

Ψ̂Σ∗

e
����

FΣ // FΣ

Again, such a Σ-generated profinite D-monoid is called fully invariant. Hence full invariance
means precisely that (in-)equalities are stable under translations, i.e. for every x, y ∈ Ψ̂Σ∗
and f : ΨΣ∗ → ΨΣ∗ we have that e(x) = e(y) implies e(f̂x) = e(f̂y) if D-algebras are
unordered; in the case that D-algebras are ordered, e(x) ≤ e(y) implies e(f̂x) ≤ e(f̂y).
Therefore Theorem 5.4 gives the following:

I Theorem 5.5 (Local Variety Theorem for Fully Invariant Varieties). There is a one-to-
one correspondence between fully invariant local varieties over Σ in C and fully invariant
Σ-generated profinite D-monoids.

I Remark 5.6. One may compare the approaches in the present paper and [2] as follows.
In [2] the authors form a functor ρT : Setop

f → C assigning to each Σ the rational fixpoint
ρTΣ = Reg(Σ), see Proposition 2.7, and define a variety of languages in C to be subfunctor
V of ρT such that each V Σ is a local variety of languages and closed under preimages of D-
monoid morphisms. The General Variety Theorem is then derived in a purely order-theoretic
way: one proves that the complete lattice of all varieties of languages is algebraic, establishes
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an Eilenberg-type correspondence for its compact elements, and proceeds by ideal completion.
In comparison to our present fibrational setting, neither the General Local Variety Theorem
nor profinite algebras and the Reiterman-Banaschweski correspondence are used in [2]. Also
the generalisation to C-varieties is not immediate in the functorial setting of [2].

6 Conclusions and Future Work

In this paper we studied varieties of languages, pseudovarieties of monoids and profinite
equational theories from an abstract fibrational viewpoint. This led us to conceptually new
proofs and generalisations for a number of Eilenberg-type results.

Our notion of profinite equational theory is introduced on a rather abstract level, and
it would be helpful to characterise theories syntactically and compare them with classical
developments [17, 5]. If D-algebras are non-ordered, every Σ-generated profinite D-monoid
e : Ψ̂Σ∗ � M is the coequaliser of its kernel pair π1, π2 : E ⇒ Ψ̂Σ∗, where E is the kernel
congruence E = { (u, v) ∈ Ψ̂Σ∗ × Ψ̂Σ∗ | e(u) = e(v) }. Hence a profinite equational theory
corresponds to a family of profinite equations, i.e. pairs of elements of a free profinite monoid.
From this observation it should be possible to obtain syntactic counterparts of our results,
e.g. a generalisation of the main result of Gehrke et al. [8] that local varieties of languages in
BA and DLat are definable by profinite identities.

In addition, it would be useful to develop a notion of morphism between profinite
equational theories, and correspondingly between varieties of languages, hence lifting our
generalised Eilenberg-Reiterman correspondences from an isomorphism of posets to an
equivalence of categories. Such a result may further justify the importance of a categorical
treatment of algebraic automata theory.
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